Explanation:
The given data is as follows.
radius (r) = 3.25 cm, 
Now, we will calculate the tangential acceleration as follows.

Putting the given values into the above formula as follows.

= 
= 37.7 
Thus, we can conclude that the tangential acceleration of a point on the rim of the flywheel during this spin-up process is 37.7
.
it will experience great force
Answer:
Magnetic field, B = 0.275 T
Explanation:
Given that,
Length of the wire, L = 35 cm = 0.35 m
Current carried in the wire, I = 2.6 A
The segment makes an angle of 53∘ with the direction of the magnetic field, 
Magnetic force, F = 0.2 N
To find,
The magnitude of the magnetic field.
Solution,
The magnetic force acting on the wire is given by :

is the angle between the length of wire and the magnetic field.

B = 0.275 T
Therefore, the magnitude of the magnetic field is 0.275 T. Hence, this is the required solution.
Answer:
E_Phase = 560V
Explanation:
The computation of the voltage i.e. dropped across each phase is shown below:
Given that
The delta connection line voltage is
E_line = 560 V
And, in the case of delta connection, the line voltage would be equivalent to the phase voltage
That means
E_Phase = E_Line
= 560 V
Hence, the voltage i.e. dropped across each phase is
E_Phase = 560V