Answer:
The speed of space station floor is 49.49 m/s.
Explanation:
Given that,
Mass of astronaut = 56 kg
Radius = 250 m
We need to calculate the speed of space station floor
Using centripetal force and newton's second law




Where, v = speed of space station floor
r = radius
g = acceleration due to gravity
Put the value into the formula


Hence, The speed of space station floor is 49.49 m/s.
Average speed of the car is 4.57 m/s
Explanation:
- Speed is calculated by the rate of change of displacement.
- It is given by the formula, Speed = Distance/Time
- Here, distance = 112 m and time = 24.5 s
Speed of the car = 112/24.5 = 4.57 m/s
Answer:

Explanation:
As we know that the position of maximum intensity on the screen is given as

here we know that
= wavelength
L = distance of the screen
d = distance between two slits
now we know that the position of 8th maximum intensity is same as that of 9th maximum on the screen
so we have

so here we have


Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s
Answer:
See the explanation below
Explanation:
Student c's belief is fulfilled only for the movement of the earth with respect to the sun. But it has no validity or does not exist when it is necessary to explain other physical phenomena with respect to other satellites. For example, how would you explain the phases of the moon, if the Earth is located in the center of the Galaxy?, another serious question regarding the observations made by scientists millions of years ago, where they observed that the distances of the Earth from other planets were changing, with respect to time. If the Earth was in the center, all the planets and the sun would revolve around it preserving a constant distance (radius), at all times.
Other phenomena to explain would be the seasons on Earth, these are due to the axis of inclination of the Earth and the rotation of it around the sun.