Answer:
40
Explanation:
Your trying to find out the meters so your going to divide 3920J by 10 and 9.8
3920/10/9.8
Answer:
53.6 grams of silver chloride was produced.
Explanation:

Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
Mass of silver nitrate = 50.0 g
Mass of hydrogen chloride = 50.0 g
Mass of silver chloride = x
Mass of nitric acid = 46.4 g
Mass of silver nitrate + Mass of hydrogen chloride =
Mass of silver chloride + Mass of nitric acid
[te]50.0 g+50.0 g=x+46.4 g[/tex]

53.6 grams of silver chloride was produced.
The equation that shows the formation of chromium (ii) ion from neutral chromium atom is as follow
Cr ---> cr^2+ + 2e-
Cr^2+ is the chromium ion with oxidation state of two which is one of the common ion of chromium. Other common ion of chromium include chromium of oxidation state 6 and 3
It depends, for example, it is quite important to know the Kelvin scale (i.e 0 degrees Celsius is 273 K and -273 degrees Celsius is 0 K ) when dealing gases. But I don't know other situations where you would need to know other temperature scales.
Hope this helps and also if you are using Fahrenheit 1 Fahrenheit is -17.22 degrees Celsius
Explanation:
Molar mass of HBr = 81 g/mol
Molar mass of nitrogen dioxide gas = 46 g/mol
Molar mass of ethane = 30 g/mol
Graham's Law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:

So, the gas with least molar mass will effuse out fastest from the container and that is ethane gas.
The formula for average kinetic energy is:

where,
k = Boltzmann’s constant = 
T = temperature = 273.15 K ( at STP)
As we can see from the formula that kinetic energy depends upon only temperature of the gas molecule.
So, from this we can say that all the gas molecules have the same average kinetic energy at this temperature.