1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
algol [13]
3 years ago
13

State some properties of metals along with their importance

Physics
1 answer:
tresset_1 [31]3 years ago
8 0

Answer:

By the why,metals have important characteristics.Conductivity By saying that metals are good conductor of heat/electricity we mean that metal allow heat/electricity to pass through them easily. ....Ductility The property which allows the metals to be drawn into thin wires is called ductility.

Explanation:

You might be interested in
You are coasting on your 12-kg bicycle at 13 m/s and a 5.0-g bug splatters on your helmet. The bug was initially moving at 1.5 m
Brut [27]

Answer:

a) Pi,c = 1066 kgm/s

b) Pi,b = 0.0075 kgm/s  

c) ΔV = - 0.0007 m/s

d) ΔV = - 0.0008 m/s

Explanation:

Given:-

- The mass of the bicycle, mc = 12 kg

- The mass of passenger, mp = 70 kg

- The mass of the bug, mb = 5.0 g

- The initial speed of the bicycle, vpi = 13 m/s

- The initial speed of the bug, vbi = 1.5 m/s

Find:-

a.What is the initial momentum of you plus your bicycle?

b.What is the initial momentum of the bug?

c.What is your change in velocity due to the collision the bug?

d.What would the change in velocity have been if the bug were traveling in the opposite direction?

Solution:-

- First we will set our one dimensional coordinate system, taking right to be positive in the direction of bicycle.

- The initial linear momentum (Pi,c) of the passenger and the bicycle would be:

                       Pi,c = vpi* ( mc + mp)

                       Pi,c = 13* ( 12+ 70 )

                       Pi,c = 1066 kgm/s  

- The initial linear momentum (Pi,b) of the bug would be:

                       Pi,b = vbi*mb

                       Pi,b = 0.005*1.5

                       Pi,b = 0.0075 kgm/s  

- We will consider the bicycle, the passenger and the bug as a system in isolation on which no external unbalanced forces are acting. This validates the use of linear conservation of momentum.

- The bicycle, passenger and bug all travel in the (+x) direction after the bug splatters on the helmet.

                       Pi = Pf

                       Pi,c + Pi,b = V*(mb + mc + mp)

Where,    V : The velocity of the (bicycle, passenger and bug) after collision.

                      1066 + 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1066.0075 / 82.005

                      V = 12.9993 m/s

- The change in velocity is Δv = 13 - 12.9993 =  - 0.00070 m/s      

- If the bug travels in the opposite direction then the sign of the initial momentum of the bug changes from (+) to (-).

- We will apply the linear conservation of momentum similarly.

                      Pi = Pf

                      Pi,c + Pi,b = V*(mb + mc + mp)        

                      1066 - 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1065.9925 / 82.005

                      V = 12.99911 m/s

- The change in velocity is Δv = 13 - 12.99911 =  -0.00088 m/s      

7 0
4 years ago
Read 2 more answers
Describe a procedure that would increase the potential energy of two magnets if like poles are used. Explain why the energy of t
zalisa [80]

Answer:

If you apply a force to separate 2 opposite poles, the potential energy of the system increases.

5 0
2 years ago
A woman was recently given the opportunity to ride in a porsche race car on their test in Hapeville, Georgia. Below is a graph o
Zinaida [17]

Answer:

During the segments B - C and D - E, the car stopped since the y axis is the distance and the distance stayed the same in between those segments.

For a simpler answer, the flat horizontal lines on the graph are the times when the car was stopped.

6 0
3 years ago
A magnetic force can act on an electron even when it A) is at rest B) moves parallel to magnetic field lines C) both of these D)
Kobotan [32]

Answer: A)

Explanation: when an electron is placed in a magnetic field, it experiences a force.

This force is given below as

F=qvB*sinθ

F = force experienced by charge.

q = magnitude of electronic charge

v = speed of electron

B= strength of magnetic field

θ = angle between magnetic field and velocity.

What defines the force exerted on the charge is the angle between the field and it velocity.

If magnetic field is parallel to velocity, then it means that θ=0° which means sin 0 = 0, which means

F = qvB * 0 = 0.

The charge being at rest has nothing to do with the angle between magnetic field strength and velocity.

3 0
3 years ago
A weightlifter liftsa 1,250-N barbell 2 m in 3 s. how much power was used to lift the barbell?
STatiana [176]
Power = Force * Distance/ time
P = 1,250 * 2/3
P = 2,500/3
P = 833.33 Watts

So, your final answer is 833.33 Watts
5 0
3 years ago
Other questions:
  • Which of the following is the discharge build up of excess electrical charge? electrical charge current electricity electron sta
    11·2 answers
  • An object has an acceleration of 18.0 m/s/s. If the net force was doubled and the mass were tripled then the new acceleration wo
    8·1 answer
  • Bumper cars A and B undergo a collision during which the momentum of the combined system is conserved.
    12·1 answer
  • What is the most dense thing in the world
    7·2 answers
  • Acid rain is an example of which type of chemical weathering?
    15·2 answers
  • Drag each tile to the correct box a chemical reaction takes place in which energy is released arrange the reactions characterist
    8·1 answer
  • Which equation is true of an atom with no elctrical charge
    14·1 answer
  • 17. How long does it take a giraffe running at a speed of 33 m/s to run 200 meters !
    12·1 answer
  • A certain star has a temperature twice that of the Sun and a luminosity 70 times greater than the solar value. What is its radiu
    7·1 answer
  • which properties change the composition of a substance? A) physical properties B) neither chemical nor physical properties C) ch
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!