Answer:
To balance an equation such as Mg + O2 → MgO, the number of the atoms in the product must equal the number of the atoms in the reactant. Mg + O2 --> MgO. To balance an equation, we CAN change coefficients, but NOT SUBSCRIPTS to balance equations.
Explanation:
Answer:
speed of electrons = 3.25 ×
m/s
acceleration in term g is 3.9 ×
g.
radius of circular orbit is 2.76 ×
m
Explanation:
given data
voltage = 3 kV
magnetic field = 0.66 T
solution
law of conservation of energy
PE = KE
qV = 0.5 × m × v²
v =
v =
v = 3.25 ×
m/s
and
magnetic force on particle movie in magnetic field
F = Bqv
ma = Bqv
a =
a =
a = 3.82 ×
m/s²
and acceleration in term g
a =
a = 3.9 ×
g
acceleration in term g is 3.9 ×
g.
and
electron moving in circular orbit has centripetal force
F =
Bqv =
r =
r =
r = 2.76 ×
m
radius of circular orbit is 2.76 ×
m
Answer:
a = 3.61[m/s^2]
Explanation:
To find this acceleration we must remember newton's second law which tells us that the total sum of forces is equal to the product of mass by acceleration.
In this case we have:
![F = m*a\\\\m=mass = 3.6[kg]\\F = force = 13[N]\\13 = 3.6*a\\a = 3.61[m/s^2]](https://tex.z-dn.net/?f=F%20%3D%20m%2Aa%5C%5C%5C%5Cm%3Dmass%20%3D%203.6%5Bkg%5D%5C%5CF%20%3D%20force%20%3D%2013%5BN%5D%5C%5C13%20%3D%203.6%2Aa%5C%5Ca%20%3D%203.61%5Bm%2Fs%5E2%5D)
Answer:
v = √2G
/ R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1
/ R = - G m1
/ R
v² = 2G
(1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G
/ R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1
/ R
Em = - G m1
/ R
R = int ⇒ Em = 0
Answer:
The acceleration is -9.8 m/s²
Explanation:
Hi there!!
When you throw a ball upward, there is a downward acceleration that makes the ball return to your hand. This acceleration is produced by gravity.
The average acceleration is calculated as the variation of the speed over time. In this case, we know the time and the initial and final speed. Then:
acceleration = final speed - initial speed/ elapsed time
acceleration = -4.3 m/s - 4.3 m/s / 0.88 s
acceleration = -9.8 m/s²