Answer:
b is the anwer
Explanation:
the option is the explanation
<h3>
Answer:</h3>
1031.4 Calories.
<h3>
Explanation:</h3>
We are given;
Mass of the copper metal = 50.0 g
Initial temperature = 21.0 °C
Final temperature, = 75°C
Change in temperature = 54°C
Specific heat capacity of copper = 0.382 Cal/g°C
We are required to calculate the amount of heat in calories required to raise the temperature of the copper metal;
Quantity of heat is given by the formula,
Q = Mass × specific heat capacity × change in temperature
= 50.0 g × 0.382 Cal/g°C × 54 °C
= 1031.4 Calories
Thus, the amount of heat energy required is 1031.4 Calories.
The balanced equation for the above reaction is as follows;
2C₈H₁₈ + 25O₂ ---> 16CO₂ + 18H₂O
stoichiometry of octane to CO₂ is 2:16
number of C₈H₁₈ moles reacted - 191.6 g / 114 g/mol = 1.68 mol
when 2 mol of octane reacts it forms 16 mol of CO₂
therefore when 1.68 mol of octane reacts - it forms 16/2 x 1.68 = 13.45 mol of CO₂
number of CO₂ moles formed - 13.45 mol
therefore mass of CO₂ formed - 13.45 mol x 44 g/mol = 591.8 g
mass of CO₂ formed is 591.8 g
Fe3O4 + 4H2 = 3Fe + 4H2O
Fe3O4 + 4H2SO4 = Fe2(SO4)3 + FeSO4 + 4H2O