Answer:
the correct result is r = 3.71 10⁸ m
Explanation:
For this exercise we will use the law of universal gravitation
F = 
We call the masses of the Earth M, the masses of the moon m and the masses of the rocket m ', let's set a reference system in the center of the Earth, the distance from the Earth to the moon is d = 3.84 108 m
rocket force -Earth
F₁ = - \frac{m' M }{r^2}
rocket force - Moon
F₂ = - \frac{m' m }{(d-r)^2}
in the problem ask for what point the force has the relation
2 F₁ = F₂
let's substitute
2
(d-r) ² =
r²
d² - 2rd + r² = \frac{m}{2M} r²
r² (1 -\frac{m}{2M}) - 2rd + d² = 0
Let's solve this quadratic equation to find the distance r, let's call
a = 1 - \frac{m}{2M}
a = 1 -
= 1 - 6.15 10⁻³
a = 0.99385
a r² - 2d r + d² = 0
r =
r = [2d ± 2d
] / 2a
r =
(1 ± √ (1.65 10⁻³)) =
(1 ± 0.04)
r₁ = \frac{d}{a} 1.04
r₂ = \frac{d}{a} 0.96
let's calculate
r₁ =
1.04
r₁ = 401.8 10⁸ m
r₂ = \frac{3.84 10^8}{0.99385} 0.96
r₂ = 3.71 10⁸ m
therefore the correct result is r = 3.71 10⁸ m
Assuming the object is on earth the objects weight would be equal to its mass multiplied by the gravitational field constant
mass=22kg
g=9.80665N/kg
weight=(22 kg) (9.80665 N/kg)=215.7463N
generally g is rounded to be 10 N/kg so for any question where it asks the weight given the mass just multiply by 10 and that should suffice. In this case the answer would be 220 N
Explanation:
Suppose you want to shine a flashlight beam down a long, straight hallway. Just point the beam straight down the hallway -- light travels in straight lines, so it is no problem. What if the hallway has a bend in it? You could place a mirror at the bend to reflect the light beam around the corner. What if the hallway is very winding with multiple bends? You might line the walls with mirrors and angle the beam so that it bounces from side-to-side all along the hallway. This is exactly what happens in an optical fiber.
The light in a fiber-optic cable travels through the core (hallway) by constantly bouncing from the cladding (mirror-lined walls), a principle called total internal reflection. Because the cladding does not absorb any light from the core, the light wave can travel great distances.
However, some of the light signal degrades within the fiber, mostly due to impurities in the glass. The extent that the signal degrades depends on the purity of the glass and the wavelength of the transmitted light (for example, 850 nm = 60 to 75 percent/km; 1,300 nm = 50 to 60 percent/km; 1,550 nm is greater than 50 percent/km). Some premium optical fibers show much less signal degradation -- less than 10 percent/km at 1,550 nm.
1
The momentum of an object is given by the product between its mass and its velocity:

where m is the mass and v the velocity.
For the object in our problem, m=10 kg and v=10 m/s, therefore its momentum is

So, the correct answer is B).
Answer:
A. Earth's gravity pulling down on air molecules
Explanation:
Air pressure refers to the weight of the air per unit surface area. It is the amount of gravitational force which is pulling down the molecules of air.
The common unit of air pressure is: Pascal, atm
1 atm = 101325 Pa
As the column of the air above increases, the air pressure increase. This is because with the increase in amount of air, the weight increase of the air increases. This is the reason a diver feels immense pressure in the sea and cooking takes a lot of time on hilly areas because of low air pressure.