Answer:
option (b) 4900 N
Explanation:
m = 2000 kg, R = 6380 km = 6380 x 10^3 m, Me = 5.98 x 10^24 kg, h = R
F = G Me x m / (R + h)^2
F = G Me x m / 2R^2
F = 6.67 x 10^-11 x 5.98 x 10^24 x 2000 / (2 x 6380 x 10^3)^2
F = 4900 N
Explanation:
If we assume negligible air resistance and heat loss, we can assume that all of the Gravitational potential energy of the ball will turn into Kinetic energy as it falls toward the ground.
Therefore our Kinetic energy = mgh = (10kg)(9.81N/kg)(100m) = 9,810J.
Answer:
a. metallic bond
b. the valence electrons from the s and p orbitals of the interacting metal atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they form a “cloud” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions.
c. due to the presence of free electrons in its outer energy levels
The answer to this question would be: a spring scale.
The spring scale that you use to determine your body weight is actually a device that measures your body gravitational force. The force itself influenced by your body weight, that is why it can determine your body weight.
More weight means more force, more force will shrink the spring more.
Answer:
The moon has no atmosphere
Explanation:
The temperatures on the surface of the Moon vary much more than those on Earth because the moon has no atmosphere (third answer in the list), and therefore there are no molecules that could retain residual heat and make the change from day to night a softer transition.