Since Astronaut and wrench system is isolated in the space and there is no external force on it
So here momentum of the system will remain conserved
so here we can say

initially both are at rest
so here plug in all values


so here the astronaut will move in opposite direction and its speed will be equal to 0.20 m/s
A mercury barometer is a device that is used to measure atmospheric pressure at a location. :)
Answer:
The highest percentage of change corresponds to the thinnest rod, the correct answer is a
Explanation:
For this exercise we are asked to change the length of the bar by the action of a force applied along its length, in this case we focus on the expression of longitudinal elasticity
F / A = Y ΔL/L
where F / A is the force per unit length, ΔL / L is the fraction of the change in length, and Y is Young's modulus.
In this case the bars are made of the same material by which Young's modulus is the same for all
ΔL / L = (F / A) / Y
the area of the bar is the area of a circle
A = π r² = π d² / 4
A = π / 4 d²
we substitute
ΔL / L = (F / Y) 4 /πd²
changing length
ΔL = (F / Y 4 /π) L / d²
The amount between paracentesis are all constant in this exercise, let's look for the longitudinal change
a) values given d and 3L
ΔL = cte 3L / d²
ΔL = cte L /d² 3
To find the percentage, we must divide the change in magnitude by its value and multiply by 100.
ΔL/L % = [(F /Y 4/π 1/d²) 3L ] / 3L 100
ΔL/L % = cte 100%
b) 3d and L value, we repeat the same process as in part a
ΔL = cte L / 9d²
ΔL = cte L / d² 1/9
ΔL / L% = cte 100/9
ΔL / L% = cte 11%
c) 2d and 2L value
ΔL = (cte L / d ½
)/ 2L
ΔL/L% = cte 100/4
ΔL/L% = cte 25%
d) value 4d and L
ΔL = cte L / d² 1/16
ΔL/L % = cte 100/16
ΔL/L % = cte 6.25%
The highest percentage of change corresponds to the thinnest rod, the correct answer is a
Isothermal process<span> is a </span>change<span> of a </span>system<span>, in which the </span>temperature<span> remains constant: Δ</span>T<span> = 0. So, if the thermodynamic process takes place at a constant temperature so that the internal energy of a system remains unchanged than this process is isothermal.
</span><span>The Joule's second Law states that the internal energy of a fixed amount of an ideal gas depends only on its temperature. So, isothermal processes are of great interest for ideal gasses.</span>