Answer:
a) f = 453.3Hz
b) f = 443.1Hz
c) f = 420Hz
Explanation:
First of all we need to know the positions and velocities of both vehicles.
For the car:
Xc(-5) = 0m; Vc(-5) = 0m/s
; Vc(5)=2.5*5 = 12.5m/s
; Vc(10)=2.5*10=25m/s
For the truck:
Xt(-5)=10*(-5) = -50m; Vt(5)=10m/s
Xt(5)=10*5 = 50m; Vt(5)=10m/s
Xt(10)=10*10=100m; Vt(10)=10m/s
Now for part a) t=-5s. The truck is behind the car, so:

Now for part b) t=5s. The car is behind the truck, so:

Now for part b) t=10s. The truck is behind the car, so:

The wavelength of the first order bright band light light is 714 nm .
Explanation:
We have to find the wavelength of the first order brightness of a light. Here we are using Huygen's principle of light.
The formula is
nλ =d sinθ
where, n is the order of maximum
λ is the wavelength of light
d is the distance between the lines on diffraction grating.
θ is the angle.
For the given equation n is 1 because the problem states that the light forms 1st order bright band
λ is unknown.
d =
or 0.0000014 m
sin (30) = 0.5
so,
1(λ) = (0.0000014)(0.5)
= 0.0000000714
= 714 nm
Thus, The wavelength of the first order bright band light light is 714 nm .
bc i cant draw good sorry but hope it helps!
and can i have brainliest? ight plz can i have brainliest?
ill give another picture of the volley ball thing
is that better?
Answer:
Option B

Explanation:
Given information
Radius of container, r=12cm=12/100=0.12m
Angular velocity= 2 rev/s, converted to rad/s we multiply by 2π
Angular velocity, 
We know that speed, 
Centripetal acceleration,
and substituting
we obtain that

Substituting \omega for 12.56637061 and r for 0.12

Rounded off, 