Kinetic energy because the horse is in motion
Answer:
vise grip
Explanation:
Manual in-line stabilization (MILS) of the cervical spine is a type of airway management when dealing with patients in traumatic condition ..it is a means that is performed by grasping the mastoid process of the patient, so as to prevent the movement of the cervical column during intubation of the trachea
MLS provides a means of stability to the cervical column for a patient in trauma. During this technique, a patient is restricted from moving his or her cervical collar. The vise grip can be used for a patient with neck injury. The technique is used to roll a patient to face up to prevent further injuries.
Answer:
3.5 seconds of flight time; 13.9 m from the base of the cliff
Explanation:
To solve this problem it is necessary to apply the concepts related to intensity as a function of power and area.
Intensity is defined to be the power per unit area carried by a wave. Power is the rate at which energy is transferred by the wave. In equation form, intensity I is

The area of a sphere is given by

So replacing we have to

Since the question tells us to find the proportion when

So considering the two intensities we have to


The ratio between the two intensities would be

The power does not change therefore it remains constant, which allows summarizing the expression to

Re-arrange to find 



Therefore the intensity at five times this distance from the source is 
The correct answer would be the first option. The process that would need more energy would be vaporizing 1 kg of saturated liquid water at a pressure of 1 atmosphere. This can be seen from the latent heat of vaporization of each system. For the saturated water at 1 atm, the latent heat is equal to 40.7 kJ per mole while, at 8 atm, the latent heat is equal to 36.4 kJ per mole. The latent heat of vaporization is the amount of heat needed in order to vaporize a specific amount of substance without any change in the temperature. As we can observe, more energy is needed by the liquid water at 1 atm.