1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
3 years ago
12

A spherical tank is being designed to hold 10 moles of carbon dioxide gas at an absolute pressure of 5 bar and a temperature of

80°F. What diameter spherical tank should be used? The molecular weight of methane is 44 g/mole.
Engineering
1 answer:
lesya692 [45]3 years ago
4 0

Answer:

r=0.228m

Explanation:

The equation that defines the states of a gas according to its thermodynamic properties is given by the general equation of ideal gases

PV=nRT

where

P=pressure =5bar=500.000Pa

V=volume

n=moles=10

R = universal constant for ideal gases = 8.31J / (K.mol)

T=temperature=80F=299.8K

solvig For V

V=(nRT)/P

V=(\frac{(10)(8.31)(299.8)}{500000} )\\V=0.0498m^3

we know that the volume of a sphere is

V=\frac{4\pi r^3}{3} \\

solving for r

r=\sqrt[3]{ \frac{3 V}{4\pi } }

solving

r=\sqrt[3]{ \frac{3 (0.049)}{4\pi } }\\r=0.228m

You might be interested in
Steam at 20 bars is in the saturated vapor state (call this state 1) and contained in a pistoncylinderdevice with a volume of 0.
saul85 [17]

Answer:

Explanation:

Given that:

<u>At state 1:</u>

Pressure P₁ = 20 bar

Volume V₁ = 0.03 \mathbf{m^{3}}

From the tables at saturated vapour;

Temperature T₁ = 212.4⁰ C  ; v_1 = vg_1 = 0.0996 \mathbf{m^{3}} / kg

The mass inside the cylinder is m = 0.3 kg, which is constant.

The specific internal energy u₁ = ug₁ = 2599.2 kJ/kg

<u>At state 2:</u>

Temperature T₂ = 200⁰ C

Since the 1 - 2 occurs in an isochoric process v₂ = v₁ = 0.099 \mathbf{m^{3}} / kg

From temperature T₂ = 200⁰ C

v_f_2 = 0.0016 \ m^3/kg  

vg_2 = 0.127 \ m^3/kg  

Since  vf_2 < v_2 , the saturated pressure at state 2 i.e. P₂ = 15.5 bar

Mixture quality x_2 = \dfrac{v_2-vf_2}{vg_2 -vf_2}

x_2 = \dfrac{(0.099-0.0016)m^3/kg}{(0.127 -0.0016) m^3/kg}

x_2 = \dfrac{(0.0974)m^3/kg}{(0.1254) m^3/kg}

\mathsf{x_2 =0.78}

At temperature T₂, the specific internal energy u_f_2 = 850.6 \ kJ/kg , also ug_2 = 2594.3 \ kJ/kg

Thus,

u_2 = uf_2 + x_2 (ug_2 -uf_2)

u_2 =850.6  +0.78 (2594.3 -850.6)

u_2 =850.6  +1360.086

u_2 =2210.686 \ kJ/kg

<u>At state 3:</u>

Temperature T_3=T_2 = 200 ^0 C ,

V_3 = 2V_1 = 0.06 \ m^3

Specific volume v_3 = 0.2  \ m^3/kg

Thus; vg_3 =vg_2 = 0.127 \ m^3/kg ,

SInce v_3 > vg_3, therefore, the phase is in a superheated vapour state.

From the tables of superheated vapour tables; at v_3 = 0.2  \ m^3/kg and T₃ = 200⁰ C

The pressure = 10 bar and v =0.206 \ m^3/kg

The specific internal energy u_3 at the pressure of 10 bar = 2622.3 kJ/kg

The changes in the specific internal energy is:

u_2-u_1

= (2210.686 - 2599.2) kJ/kg

= -388.514 kJ/kg

≅ - 389 kJ/kg

u_3-u_2

= (2622.3 - 2210.686)  kJ/kg

= 411.614 kJ/kg

≅ 410 kJ/kg  

We can see the correct sketches of the T-v plot showing the diagrammatic expression in the image attached below.

3 0
3 years ago
What is the mass of the same dragster body (volume of 150 cm3) if it is made of basswood instead?
dusya [7]

Answer:

the answer is 61.5

Explanation:

8 0
3 years ago
What is your name in face book​
nekit [7.7K]

Answer:

Why do you want to know...?

4 0
3 years ago
Read 2 more answers
how is friction losses in pipes reduced? a. decrease the pipe diameter b. increase the length of the pipes. c. decrease the leng
Citrus2011 [14]

Friction losses in pipes can be reduced by decreasing the length of the pipes, reducing the surface roughness of the pipes, and increasing the pipe diameter. Thus, options (c),(e), and (f) hold correct answers.

Friction loss is a measure of the amount of energy a piping system loses because flowing fluids meet resistance. As fluids flow through the pipes, they carry energy with them. Unfortunately, whenever there is resistance to the flow rate, it diverts fluids, and energy escapes. These opposing forces result in friction loss in pipes.

Friction loss in pipes can decrease the efficiency of the functions of pipes. These are a few ways by which friction loss in pipes can be reduced and the efficiency of the piping system can be boosted:

  • <u><em>Decrease the length of the pipes</em></u>: By decreasing pipe lengths and avoiding the use of sharp turns, fittings, and tees, whenever possible result in a more natural path for fluids to flow.
  • <u><em>Reduce the surface roughness of the pipes</em></u>:  By reducing the interior surface roughness of pipes, a smooth and clearer path is provided for liquids to flow.
  • <u><em>Increase the pipe diameter: </em></u>By widening the diameters of pipes, it is ensured that fluids squeeze through pipes easily.

You can learn more about friction losses at

brainly.com/question/13348561

#SPJ4

3 0
1 year ago
What is made in heaven?​
kramer

Answer:

Babies come from heaven didn't you know?

3 0
2 years ago
Other questions:
  • Define a public static method named s2f that takes two String arguments, the name of a file and some text. The method creates th
    5·1 answer
  • A heat pump cycle is used to maintain the interior of a building at 15°C. At steady state, the heat pump receives energy by heat
    9·1 answer
  • You live on a street that runs East to West. You just had 2 inche of snow and you live on the North side of the street. You retu
    14·1 answer
  • Importance of civil engineering in nepal?​
    10·1 answer
  • La iluminación de la superficie de un patio amplio es 1600 lx cuando el ángulo de elevación del sol 53°. Calcular la iluminación
    15·1 answer
  • A front wheel drive vehicle with four wheel disc brakes is pulling to the left. Tech A says an external kink or internal restric
    13·1 answer
  • Plzzzz helppp design process in order
    12·1 answer
  • Principals of Construction intro
    11·1 answer
  • 9
    15·1 answer
  • What speeds did john j montgomerys gliders reach
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!