Answer:
The slope of the graph is what you need. That tells you the speed not the velocity. In order to find the velocity you would also need to know the direction of the motion.
Answer:A i think or D but its not c or b
Explanation:
Answer:
x = 5[km]
Explanation:
We must convert the time from minutes to hours.
![t=30[min]*\frac{1h}{60min}= 0.5[h]\\](https://tex.z-dn.net/?f=t%3D30%5Bmin%5D%2A%5Cfrac%7B1h%7D%7B60min%7D%3D%200.5%5Bh%5D%5C%5C)
We know that speed is defined as the relationship between space and time.

where:
x = space [m]
t = time = 0.5 [h]
v = velocity [m/s]
Now replacing:
![x = 10[\frac{km}{h} ]*0.5[h]\\x=5[km]](https://tex.z-dn.net/?f=x%20%3D%2010%5B%5Cfrac%7Bkm%7D%7Bh%7D%20%5D%2A0.5%5Bh%5D%5C%5Cx%3D5%5Bkm%5D)
Answer:
The law of conservation of mass or principle of mass conservation
Explanation:
It states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so quantity can neither be added nor be removed.
Answer:
1 cm⁻¹ =1.44K 1 ev = 1.16 10⁴ K
Explanation:
The relationship between temperature and thermal energy is
E = K T
The relationship of the speed of light
c =λ f = f / ν 1/λ= ν
The Planck equation is
E = h f
Let's start the transformations
c = f λ = f / ν
f = c ν
E = h f
E = h c ν
E = KT
h c ν = K T
T = h c ν / K =( h c / K) ν
Let's replace the constants
h = 6.63 10⁻³⁴ J s
c = 3 10⁸ m / s
K = 1.38 10⁻²³ J / K
v = 1 cm-1 (100 cm / 1 m) = 10² m-1
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²
A = h c / K = 1,441 10⁻²
T = 1.44K
ν = 103 cm⁻¹ = 103 10² m
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²
T = 148K
1 Rydberg = 1.097 10 7 m
As we saw at the beginning the λ=1 / v
T = (h c / K) 1 /λ
T = 1,441 10⁻² 1 / 1,097 10⁷
T = 1.3 10⁻⁹ K
E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J
E = KT
T = E/K
T = 1.6 10⁻¹⁹ /1.38 10⁻²³
T = 1.16 10⁴ K