Answer:
2
b= they are grouped differently, but all the atoms are still there.
Answer:
Just too clarify its actually
A: gas
B: solid
C: liquid
I had the same question, it's most likely B.
Answer:
C₆H₆
Explanation:
Each border of the figure represents 1 atom of carbon. We have 6 borders = 6 atoms of carbon.
Each atom of carbon form 4 bonds. All the carbons are doing a double bond and a single bond with other carbons. That means are bonded 3 times. The other bond (That is not represented in the figure. See the image) comes from hydrogens. As we have 6 carbons that are bonded each 1 with one hydrogen. There are six hydrogens and the molecular formula is:
<h3>C₆H₆</h3>
This structure is: Benzene
Answer:
The correct answer is -1085 KJ/mol
Explanation:
To calculate the formation enthalphy of a compound by knowing its lattice energy, you have to draw the Born-Haber cycle step by step until you obtain each element in its gaseous ions. Find attached the correspondent Born-Haber cycle.
In the cycle, Mg(s) is sublimated (ΔHsub= 150 KJ/mol) to Mg(g) and then atoms are ionizated twice (first ionization: ΔH1PI= 735 KJ/mol, second ionization= 1445 KJ/mol) to give the magnesium ions in gaseous state.
By other hand, the covalent bonds in F₂(g) are broken into 2 F(g) (Edis= 154 KJ/mol) and then they are ionizated to give the fluor ions in gaseous state 2 F⁻(g) (2 x ΔHafinity=-328 KJ/mol). The ions together form the solid by lattice energy (ΔElat=-2913 KJ/mol).
The formation enthalphy of MgF₂ is:
ΔHºf= ΔHsub + Edis + ΔH1PI + ΔH2PI + (2 x ΔHaffinity) + ΔElat
ΔHºf= 150 KJ/mol + 154 KJ/mol + 735 KJ/mol + 1445 KJ/mol + (2 x (-328 KJ/mol) + (-2913 KJ/mol).
ΔHºf= -1085 KJ/mol