I’m pretty sure it’s 150 joules
Answer:
Copper(II) sulphate – sodium hydroxide reaction
The reaction between copper(Il) sulphate and sodium hydroxide solutions is a good place to start. If you slowly add one to the other while stirring, you will get a precipitate of copper(II) hydroxide, Cu(OH)2.
Answer:
Approximately
.
Explanation:
Make use of the molar mass data (
) to calculate the number of moles of molecules in that
of
:
.
Make sure that the equation for this reaction is balanced.
Coefficient of
in this equation:
.
Coefficient of
in this equation:
.
In other words, for every two moles of
that this reaction consumes, two moles of
would be produced.
Equivalently, for every mole of
that this reaction consumes, one mole of
would be produced.
Hence the ratio:
.
Apply this ratio to find the number of moles of
that this reaction would have produced:
.
Zn+2HCl ----> 2ZnCl2 + H2
For 2.50 g of Zn
Mass per mol = 2.50/molar mass of Zn = 2.50/65.38 = 0.0382 g/mol
There are two moles of ZnCl2 and total mass = 2*0.0382*molar mass of ZnCl2 = 2*0.0382*136.286 = 10.42 g
For 2 g of HCl
Mass per mol = 2/2*molar mass of HCl = 2/ (2*36.46) = 0.0274 g/mol
For the two moles of ZnCl2, mass produced = 2*0.0274*136.286 = 7.48 g
It can be noted that 2 g of HCl produced less amount of ZnCl and thus it is the limiting reagent.
Answer:
Orbital Notation is more specific on where exactly the electron is placed.
Explanation:
When writing an electron configuration for an atom, rather than writing out the occupation of each and every orbital specifically, you instead lump all the core electrons together and designate it with a symbol of the corresponding noble gas on the Periodic Table.
the arrangement of electrons in the orbitals of an atom or molecule
While Orbital Notation is a visual transformation of the electron configuration. It shows you where each specific electron is placed and what its "spin" is.
Glad I could help!