Answer:
0.07 g/s.
Explanation:
From the question given above, the following data were obtained:
Mass lost = 9.85 g
Time taken = 2 min 30 s
Mean rate =?
Next, we shall convert 2 min 30 s to seconds (s). This can be obtained as follow:
1 min = 60 s
Thus,
2 min = 2 × 60 = 120 s
Therefore,
2 min 30 s = 120 s + 30 s = 150 s
Finally, we shall determine the mean rate of the reaction. This can be obtained as illustrated below:
Mass lost = 9.85 g
Time taken = 150 s
Mean rate =?
Mean rate = mass lost / time taken
Mean rate = 9.85 / 150
Mean rate = 0.07 g/s
Therefore, the mean rate of the reaction is 0.07 g/s
ELETRICK probably wondering why metal shocks (psst why does wires charge phones)
An aqueous solution contains the following ions Cl⁻, Ag⁺, Pb²⁺, NO₃⁻ & SO₄²⁻ and more than one precipitate will form are AgCl, PbCl₂, PbSO₄ & Ag₂SO₄.
<h3>What is precipitate?</h3>
Precipitate is the insoluble compound which is present at the bottom of any chemical reaction in the solid state.
If in an aqueous solution Cl⁻, Ag⁺, Pb²⁺, NO₃⁻ & SO₄²⁻ ions are present then:
- Compounds AgCl, PbCl₂, PbSO₄ & Ag₂SO₄ are not soluble in water as it is present in the form of precipitate.
- Pb(NO₃)₂ is fully soluble in water and will not make precipitate.
Hence precipitates are AgCl, PbCl₂, PbSO₄ & Ag₂SO₄.
To know more about precipitates, visit the below link:
brainly.com/question/2437408
#SPJ4
Answer:Student 2
Explanation:
Student 2 repeated the experiment several times with different seeds to make sure the experiment would come out with the same answers and was reliable, using the same area would make sure the environment wouldn't interfere. The other students didn't do all the things that student 2 needed for the experiment.