Answer:
Explanation:
The weight of the box is
W = 253.1N
Weight is on an incline plane
θ = 39.7°
The weight of an object is always acting downward
So, the weight makes an angle of 39.7° with the vertical component
Then, it's horizontal component is
Wx = W•Sinθ
Wx = 253.1 × Sin 39.7°
Wx = 161.67 N
The horizontal component of the weight is 161.67N
This is the force acting down the plane.
Check attachment
Answer:
N≡N bond
Explanation:
Bond energy (bond enthalpy) is a measure of the bond strength in the bond. It is defined as average value of bond dissociation energies in the gas-phase for all the bonds having same type with in same chemical species.
<u>The greater the bond energy, the greater is the amount of energy required to break the bond, the more stable is the bond.</u>
Thus, among the following bonds:
O=O 498 kJ/mol
N≡N 946 kJ/mol
C=C 614 kJ/mol
C=O 745 kJ/mol
C≡C 839 kJ/mol
<u>The greatest bond energy is of N≡N 946 kJ/mol and thats why it is the most stable.</u>
The frequency of a wave is the number of complete oscillations passing a given point per second.
In this case, assuming the duck is stationary, we have 4 complete waves passing the duck in one second: therefore, the frequency of the wave is
Answer:
180m
Explanation:
We can use the formula [ d = st ].
12 * 15 = 180m
Best of Luck!
Answer:
Explanation:
Given that,.
A house hold power consumption is
475 KWh
Gas used is
135 thermal gas for month
Given that, 1 thermal = 29.3 KWh
Then,
135 thermal = 135 × 29.3 = 3955.5 KWh
So, total power used is
P = 475 + 3955.5
P =4430.5 KWh
Since 1 hr = 3600 seconds
So, the energy consumed for 1hr is
1KW = 1000W
P = energy / time
Energy = Power × time
E = 4430.5 KWhr × 1000W / KW × 3600s / hr
E = 1.595 × 10^10 J
So, using Albert Einstein relativity equation
E = mc²
m = E / c²
c is speed of light = 3 × 10^8 m/s
m = 1.595 × 10^10 / (3 × 10^8)²
m = 1.77 × 10^-7 kg
Then,
1 kg = 10^6 mg
m = 1.77 × 10^-7 kg × 10^6 mg / kg
m = 0.177mg
m ≈ 0.18 mg