Answer:
Mass of 1 mole of copper is 63.83 g.
0.03916 moles of copper atoms have a mass equal to the 2.5 grams of copper penny.
Explanation:
Mass of 1 copper atom,m = 

Mass of 1 mole of copper :
= 
Mass of 1 mole of copper = 63.83 g
Mass of copper penny = 2.5 g
Atomic mass of copper = 63.83 g/mol
Moles of copper in 2.5 g of copper penny:

0.03916 moles of copper atoms have a mass equal to the 2.5 grams of copper penny.
The answer is; liquid phase
The characteristics described in the question are those of a liquid. The forces between liquid particles are weaker than the forces between solid particles because the particles are further apart. The particles are not held in a fixed position in the structure hence it can flow and take the shape of the container in which it is in.
Answer:
(A) The shorter the wavelength, the more total energy the wave contains.
(B) The longer the wavelength, the less total energy the wave contains.
Explanation:
The wavelength (λ), frequency (f) and energy (E) are interrelated. This relationship between them is represented in the following equations:
λ = v/f and E = hf
Where;
λ = wavelength (m)
f = frequency (Hz)
E = energy (Joules)
v and h represents speed of light and Planck's constants respectively.
Combining both equations, E = hc/λ
This equation shows that ENERGY (E) is directly proportional to the frequency (f) but inversely proportional to the wavelength (λ). This means that "the shorter the wavelength, the more total energy a wave contains" and vice versa.
However, the higher the frequency, the more the total energy the wave contains and vice versa.
Answer: C.
This is because the atoms on either side of the equation in all the other solutions are not equal.