A homogeneous mixture is a mixture that is mixed so well together that you cannot see the different components that make up the mixture as the ingredients will not separate out, even over time.
Answer:
The answer is "29.081"
Explanation:
when the empty 2.00 L container of 1000 kg, a sample of HI (9.30 x 10-3 mol) has also been placed.




Its density of I 2 was 6.29x10-4 M if the balance had been obtained, then we have to get the intensity of equilibrium then:

It is defined that:


Now, we calculate the position:
For the reaction
, you can calculate the value of Kc at 1000 K.
data expression for Kc


calculating the reverse reaction



Answer:
C. 17 grams.
Explanation:
∵ mass % = [mass of solute/mass of solution] x 100.
mass of solute (NaCl) = ??? g & mass of solution = 140.0 g.
<em>∴ mass of NaCl = (mass %)(mass of solution)/100 </em>= (12.0)(140.0)/100 = <em>16.80 g ≅ 17.0 g.</em>
It would take 147 hours for 320 g of the sample to decay to 2.5 grams from the information provided.
Radioactivity refers to the decay of a nucleus leading to the spontaneous emission of radiation. The half life of a radioactive nucleus refers to the time required for the nucleus to decay to half of its initial amount.
Looking at the table, we can see that the initial mass of radioactive material present is 186 grams, within 21 hours, the radioactive substance decayed to half of its initial mass (93 g). Hence, the half life is 21 hours.
Using the formula;
k = 0.693/t1/2
k = 0.693/21 hours = 0.033 hr-1
Using;
N=Noe^-kt
N = mass of radioactive sample at time t
No = mass of radioactive sample initially present
k = decay constant
t = time taken
Substituting values;
2.5/320= e^- 0.033 t
0.0078 = e^- 0.033 t
ln (0.0078) = 0.033 t
t = ln (0.0078)/-0.033
t = 147 hours
Learn more: brainly.com/question/6111443