Energy transformation in fireworks supports the law of conservation of energy because the total chemical energy packed into the fireworks before they ignite must be the same as the total remaining after it explodes... I hope this was the answer you were looking for.. I love your Yoongi pfp btw! :) </3
The higher you go the more potential energy there is, and the lower it is the more kinetic energy there is, so the more kinetic energy there is the higher the ball will bounce.
Answer:
0.20
Explanation:
The box is moving at constant velocity, which means that its acceleration is zero; so, the net force acting on the box is zero as well.
There are two forces acting in the horizontal direction:
- The pushing force: F = 99 N, forward
- The frictional force:
, backward, with
coefficient of kinetic friction
m = 50 kg mass of the box
g = 9.8 m/s^2 gravitational acceleration
The net force must be zero, so we have

which we can solve to find the coefficient of kinetic friction:

Answer:
the attraction between N and S poles