Answer:
<h2>
<em>no</em></h2>
Explanation:
<h2><u><em>
the particles in gas move so freely that it cannot have a definite density</em></u></h2><h2><u><em>
</em></u></h2><h2><u><em>
</em></u></h2><h2><u><em>
</em></u></h2><h2><u><em>
moo</em></u></h2>
Answer:
Explanation:
An atom is the smallest unit of an element that can take part in a chemical reaction. Atoms (and there corresponding symbols) mentioned in the question are
Lithium ⇒ Li
Carbon ⇒ C
Nitrogen ⇒ N
Potassium ⇒ K
Oxygen ⇒ O
Iron ⇒ Fe
Chlorine ⇒ Cl
A compound is substance that contains two or more atoms that are chemically combined and can be represented with a chemical formula. The compounds (and there corresponding formula) mentioned in the question are
Water ⇒ H₂O
Edible salt (sodium chloride) ⇒ NaCl
Chalk (calcium carbonate) ⇒ CaCO₃
Lime (calcium oxide) ⇒ CaO
Iodides (such as sodium iodide and potassium iodide) ⇒ NaI and KI respectively
Answer:
Diasteriomers
Stereoisomers
Stereoisomers
Meso compounds
Constitutional isomers
Enantiomers
Enantiomers
Explanation:
Isomers are compounds that posses the same molecular formula but different structural formulas.
Constitutional isomers differ only in atom to atom connectivity while stereoisomers differ in arrangement of atoms in space. Stereo isomers differ in physical and chemical properties of the compounds.
When stereo isomers are non-superimpossible mirror images of each other, they are called enantiomers. Enantiomers have the same chemical and physical properties and differ only in their reaction with chiral substances.
Achiral compounds are compounds that do not exhibit chirality. Some achiral compounds contain stereogenic centers and are called meso compounds.
Answer:
I think the answers are... b, d, and maybe a. I don't know for sure. So only put these answers in if you trust me!
Explanation:
I had this very question, and I put in what I think were the answers.
Since the density of water is 1 g /mL, hence there is 100
g of H2O. So total mass is:
m = 100 g + 5 g = 105 g
=> The heat of reaction can be calculated using the
formula:
δhrxn = m C ΔT
where m is mass, C is heap capacity and ΔT is change in
temperature = negative since there is a decrease
δhrxn = 105 g * 4.18 J/g°C * (-2.30°C)
δhrxn = -1,009.47 J
=> However this is still in units of J, so calculate
the number of moles of NaCl.
moles NaCl = 5 g / (58.44 g / mol)
moles NaCl = 0.0856 mol
=> So the heat of reaction per mole is:
δhrxn = -1,009.47 J / 0.0856 mol
δhrxn = -11,798.69 J/mol = -11.8 kJ/mol