Answer:
1) not so long (maybe an hour or two)
2) access to information through the internet will be most affected if my computer and mobile phone run out of battery power.
3) yes, one should prepare for power outage. This can be done by having a standby alternative source of power like the use of inverters that stores electrical energy in form of chemical energy, and small internal combustion engine powered electric generators.
4) solar panels can be used to draw power from incident sun rays, this power can be stored in an inverter for future use in case of a power outage.
5) energy from the sun is converted into direct current which is then supplied to an accumulator in the opposite direction to its flow of current. When the energy is needed, it can be used directly, or converted to an alternating current. This is achieved by connecting its terminal to the supply. Electric field is generated by flow of ions and electrons within the working chemical (e.g lithium).
Explanation:
Given that,
Mass of trackler, m₁ = 100 kg
Speed of trackler, u₁ = 2.6 m/s
Mass of halfback, m₂ = 92 kg
Speed of halfback, u₂ = -5 m/s (direction is opposite)
To find,
Mutual speed immediately after the collision.
Solution,
The momentum of the system remains conserved in this case. Let v is the mutual speed after the collision. Using conservation of momentum as :

So, the mutual speed immediately after the collision is 1.04 m/s but in opposite direction.
5-14 m/s in 3 seconds
a=vf-vi/t
a=14-5/3
a=9/3
a=3 m/s^2
Answer:
<u><em>0.03 m/s</em></u>
Explanation:
<em>Applying law of conservation of momentum, </em>
- <em>m₁v₁ + m₂v₂ = (m₁ + m₂)v</em>
- <em>0.105(24) + 75(0) = (0.105 + 75)v</em>
- <em>75.105v = 2.52</em>
- <em>v = 2.52/75.105</em>
- <em>v = </em><u><em>0.03 m/s</em></u>
This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut