Answer:
f' = 2 f
Explanation:
The frequency of the pendulum that swings in simple harmonic motion is given by :

Where
l is the length of pendulum
g is the acceleration due to gravity
If the length of the thread is increased by a factor of 4, such that, l' = 4 l, let f' is the new frequency such that,



f' = 2 f
So, the new frequency of the pendulum will become 2 time of initial frequency. Hence, the correct option is (b) "2f"
The answer is false. The speed of the astronaut cancels out the force of gravity, causing a 'stationary freefall'. While under these effects, it is not required for an astronaut to 'strengthen' his body.
Answer:
0.4 m/s
Explanation:
Law of conservation of momentum tell us that the change in momentum of the hammer will be equal to the change in momentum of the astronaut
change in momentum of hammer = change in momentum of astronaut
2 kg (14 m/s - 0 m/s) = 70 kg * (v-0)
v = 0.4 m/s
It's not in motion when the line straight and flat . there's #9