Answer:
11.515 Joule
Explanation:
Volume of aluminium = V = 4.89×10⁻³ m³
Coefficient of volume expansion for aluminum = α = 69×10⁻⁶ /°C
Initial temperature = 19.1°C
Final temperature = 357°C
Pressure of air = 1.01×10⁵ Pa
Change in temperature = ΔT= 357-19.1 = 337.9 °C
Change in volume
ΔV = αVΔT
⇒ΔV = 69×10⁻⁶×4.89×10⁻³×337.9
⇒ΔV = 114010.839×10⁻⁹ m³
Work done
W = PΔV
⇒W = 1.01×10⁵×114010.839×10⁻⁹
⇒W = 11.515 J
∴ Work is done by the expanding aluminum is 11.515 Joule
Answer:
Horse/Speed
55 mph
rounded to the tenth? either 60 or 50
but 350 would stay like that i believe!
Explanation:
Double
Explanation:
Since the period T of a pendulum is given by

By increasing the length of the pendulum by 4, the period becomes

You can see that the period doubles when we increase the length by a factor of 4.
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed: