1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeu [11.5K]
3 years ago
12

Explain the relationship between mass and gravity

Physics
2 answers:
Pepsi [2]3 years ago
8 0

Answer:

Since the gravitational force is directly proportional to the mass of both interacting objects, more massive objects will attract each other with a greater gravitational force. So as the mass of either object increases, the force of gravitational attraction between them also increases.

Explanation:

i did some research and this is what I got. hope it helps.

daser333 [38]3 years ago
8 0

Mass is the amount of matter present in an object. All objects in the universe attract every other object in the universe. This force is called the gravitational force or gravity. This force is proportional to the product of the masses of the two objects and inversely proportional to the square of distance between them.

More is the mass, more is the gravitational force or gravity

You might be interested in
A 95kg fullback (football player for those not into sports) moving south with a speed of 5.0 m/s has a perfectly inelastic colli
Lunna [17]

Answer:

a.  v=3.11mls, 29.4^{0}

b.   K.E =-697.8J

Explanation:

To calculate the values in the  question, a deep understanding of perfect inelastic collision is important.

When two bodies undergo inelastic collision, two important parameters must be well understood i.e

Momentum: the momentum is always conserved in perfectly inelastic collision. i.e the total momentum after collision is the sum of the individual momentum before collision

Kinetic energy: Kinetic energy is not conserved due to dissipative force.

a.To calculate the velocity, we first find the total momentum before collision

Momentum of player 1 p_{1} =mv=95kg*5m/s\\p_{1} =475kgm/s\\

Momentum of player 2 p_{2} =mv=90kg*3m/s\\p_{1} =270kgm/s\\

Hence the total momentum p_{12}=p_{1}+p_{2}\\

Note, since the direction of movement before collision is due south and  due north respectively we have to represent the velocity using the rectangular coordinate

Hence  p_{12}=(m_{1}+m_{2})v=p_{1}i+p_{2}j\\

(95+90)v=475i+270j\\

v=2.57i+1.45j\\

solving for the resultant velocity, we have

v=\sqrt{2.75^{2} +1.45^{2}}\\ v=3.11mls

To calculate the direction of movement, we have

\alpha =tan^{-1}=\frac{v_{j} }{v_{i}}\\  \alpha =tan^{-1}=\frac{1.45}{2.57}\\\alpha =29.4^{0}

b. to calculate the decrease in total kinetic energy, before collision, the total kinetic was

K.E_{initial} =\frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2}.\\K.E_{initial} =((1/2)*95*5^{2})+((1/2)*90*3^{2})\\K.E_{initial} =1187.5+405\\K.E_{initial} =1592.5J\\

And the final kinetic energy after collision is

K.E_{final} =\frac{1}{2}(m_{1}+m_{2} )v^{2}\\  K.E_{final} =\frac{1}{2}(95+90)* 3.11^{2}\\ K.E_{final} =894.7J

The decrease in Kinetic energy is

K.E =K.E_{final}- K.E_{initial}=894.7-1592.5

K.E =-697.8J

The negative sign indicate a decrease in Kinetic energy

4 0
3 years ago
What is an example of a form of friction that impedes motion
Travka [436]

Answer:

to me I think is static

Explanation:

that is my own thinking

4 0
3 years ago
An X-Ray tube is an evacuated glass tube, where the electrons are produced at one end and accelerated by a strong electric field
lawyer [7]

Answer:

a) ΔV = 25.59 V, b)  ΔV = 25.59 V,  c)  v = 7 10⁴ m / s,  v/c= 2.33 10⁻⁴ ,

v/c% = 2.33 10⁻²

Explanation:

a) The speed they ask for electrons is much lower than the speed of light, so we don't need relativistic corrections, let's use the concepts of energy

starting point. Where the electrons come out

          Em₀ = U = e DV

final point. Where they hit the target

          Em_f = K = ½ m v2

energy is conserved

          Em₀ = Em_f

         e ΔV = ½ m v²

         ΔV = \frac{1}{2} mv²/e     (1)

If the speed of light is c and this is 100% then 1% is

         v = 1% c = c / 100

         v = 3 10⁸/100 = 3 10⁶6 m/ s

let's calculate

         ΔV = \frac{1}{2}  \frac{9.1 \ 10^{-31} (3 10^6 )^2 }{ 1.6 10^{-19} }

         ΔV = 25.59 V

b) Ask for the potential difference for protons with the same kinetic energy as electrons

             K_e = K_p

              K_p = ½ m v_e²

              K_p = \frac{1}{2}  9.1 10⁻³¹ (3 10⁶)²

              K_p = 40.95 10⁻¹⁹ J

we substitute in equation 1

              ΔV = Kp / M

              ΔV = 40.95 10⁻¹⁹ / 1.6 10⁻¹⁹

              ΔV = 25.59 V

notice that these protons go much slower than electrons because their mass is greater

c) The speed of the protons is

             e ΔV = ½ M v²

             v² = 2 e ΔV / M

             v² = \frac{2 \ 1.6 \ 10^{-19} \ 25.59 }{1.67 \ 10^{-27} }

              v² = 49,035 10⁸

               v = 7 10⁴ m / s

Relation

        v/c = \frac{7 \ 10^4 }{ 3 \ 10^8}

        v/c= 2.33 10⁻⁴

8 0
3 years ago
How do I know if i’m doing number 2 right?
Ksju [112]

We are given an object that is speeding up on a level ground.

Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.

The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.

Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.

We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.

8 0
1 year ago
Hypothetically speaking, if an object were located at the center of the Earth, the gravitational force on that object due to the
Likurg_2 [28]

Answer:

D. ) The force would be zero newtons

Explanation:

Because

If you are at the center of the earth, gravity is zero because all the mass around you is pulling "up" (every direction there is up!)

So F=mg so if g is zero F is also zero

5 0
4 years ago
Other questions:
  • A rolling ball has an initial velocity of 1.6 meters per second. if the ball has a constant acceleration of 0.33 meters per seco
    10·1 answer
  • A ball of mass 0.2 kg is dropped from a height of 10 m. How much mechanical energy does it have right before it hits the ground?
    15·2 answers
  • Newton’s Laws of Motion are absolute in classical physics. One example that uses all three laws simultaneously is the firing of
    15·2 answers
  • A pesky rabbit has been feeding on Mrs. Cromwell’s prized flowers. In order to put an end to this she devised the simple trap be
    5·1 answer
  • Why does the moon appear to wax grow larger and then wane or get smaller
    11·1 answer
  • If an object is dropped from a height of 144 feet, the function h(t)= -16t^2+144 gives the height of the object after t seconds.
    7·1 answer
  • Increasing excitatory signals above threshold levels for neural activation will not affect the intensity of an action potential.
    5·1 answer
  • A pupil wants to find the density of an oil. She uses a chemical balance which measures to the nearest gram (g). She places an e
    13·1 answer
  • What is the potential energy of a 32 kg child sitting on the floor? Explain.
    15·1 answer
  • You push a cart with mass 30 kg forward, giving it an acceleration of 5 m/s2How much force did you apply? O A. 0.17 N O B. 35 N
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!