Answer:
380 to 700 nanometers
Explanation:
The visible light spectrum is the segment of the electromagnetic spectrum that the human eye can view. More simply, this range of wavelengths is called visible light. Typically, the human eye can detect wavelengths from 380 to 700 nanometers.
Answer:
a. 12,600 N
b. 1290 kg
Explanation:
a. Impulse = change in momentum
F Δt = m Δv
F (0.192 s) = (59 kg) (0 m/s − 41 m/s)
F = -12,600 N
b. F = mg
12,600 N = m (9.8 m/s²)
m = 1290 kg (or 2,830 lbs)
Answer:
Average force, F = 286.72 N
Explanation:
Given that,
Mass of the baseball, m = 140 g = 0.14 kg
Speed of the ball, v = 32 m/s
Distance, h = 25 cm = 0.25 m
We need to find the average force exerted by the ball on the glove. It is solved using the conservation of energy as :

F = mg



F = 286.72 N
So, the average
force exerted by the ball on the glove is 286.72 N. Hence, this is the required solution.
Answer:
1.736m/s²
Explanation:
According to Newton's second law;

where;
Fm is the moving force = 70.0N
Ff is the frictional force acting on the body

is the coefficient of friction
m is the mass of the object
g is the acceleration due to gravity
a is the acceleration/deceleration
The equation becomes;

Substitute the given parameters

Hence the deceleration rate of the wagon as it is caught is 1.736m/s²
The speed is changing its direction all the time. There
is an acceleration which changes the direction of the speed – that is called
centripetal acceleration. Only uniform linear motions are considered to have no
acceleration.
This is the general formula for acceleration
a = dv/dt
When calculating dv, you should keep in mind the change
in the velocity vector’s direction. You can easily see in a graph that with dt
tending to 0 (so the length of the arc covered is also tending to 0), the difference
between vectors Vf and V0 has a direction which is perpendicular to velocity
(the shorter the arc, the closest the angle is to 90 degrees).
There is a formula (which can be deducted from the
previous formula) which allows you to calculate the acceleration:
a = v^2/r
Let’s talk about the units:
v is in m/s
r is in m
so v^2/r
is in (m/s)^2/m = (m^2/s^2)/m = m/s^2
which is the same unit as dv/dt:
dv/dt = (m/s)/s= m/s^2