Answer:
Q = 590,940 J
Explanation:
Given:
Specific heat (c) = 1.75 J/(g⋅°C)
Mass(m) = 2.01 kg = 2,010
Change in temperature (ΔT) = 191 - 23 = 168°C
Find:
Heat required (Q)
Computation:
Q = mcΔT
Q = (2,010)(1.75)(168)
Q = 590,940 J
Q = 590.94 kJ
To solve this problem we will apply the concepts related to the conservation of momentum. Momentum can be defined as the product between mass and velocity. We will depart to facilitate the understanding of the demonstration, considering the initial and final momentum separately, but for conservation, they will be later matched. Thus we will obtain the value of the mass. Our values will be defined as




Initial momentum will be


After collision

Final momentum


From conservation of momentum

Replacing,





Mass of Jupiter=1.9×10
27
㎏=M
1
Mass of Sun=1.99×10
30
㎏=M
2
Mean distance of Jupiter from Sun=7.8×10
11
m=r
G=6.67×10
−11
N㎡㎏
−2
Gravitational Force, F=
r
2
GM
1
M
2
F=
(7.8×10
11
)
2
6.67×10
−11
×1.9×10
27
×1.99×10
30
F=4.16×10
23
N
Answer:
<em>The velocity after the collision is 2.82 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of two bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
Or, equivalently:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

There is an m1=3.91 kg car moving at v1=5.7 m/s that collides with an m2=4 kg cart that was at rest v2=0.
After the collision, both cars stick together. Let's compute the common speed after that:



The velocity after the collision is 2.82 m/s