Answer:
Explanation:
Work: This can be defined as the product of force and distance. The unit of work is Joules (J). it can be expressed mathematically as
W = F×d
or
W =
.................................. Equation 1
Where b = upper limit, a = lower limit, Fx = expression of force.
<em>Given: a = 0 , b = 1.3 m, Fx = 4 + 15.7x - 1.5x²</em>
Substituting these values into equation 1
<em>W =
</em>
W = ᵇ[4x + 15.7x²/2-1.5x³/3 +C]ₐ
Work = upper limit - lower limit
Work = ᵃ[4x + 15.7x²/2 - 1.5x³/3 +C] - [4x + 15.7x²/2 + 1.5x³/3 +C]ᵇ............... Equation 2
Substituting the values of a and b into equation 2
Work = [4(1.3) + 15.7(1.3)²/2-1.5(1.3)³/3 + C] - [0 +C]
Work = [5.2 + 26.53 -3.29 + C] - C
Work = 28.44 J
Work done by the force = 28.44 J.
Answer:
Explanation:
——»To measure centimeters, we can use ruler.
- Use a ruler with the side marked either cm or mm. Align the edge of the object with the first centimeter line on the ruler, then find the length in whole centimeters, or the larger numbers on the ruler.
I'd say B since headland since whenever there's a crash wave, headland receives most of the impact
False, the inertia does not keep us moving in a circle on a spinning ride at the fair.
Answer: Option B
<u>Explanation:
</u>
Inertia is the resisting force of any object which resists in change in their state. If an object is moving the inertia will act in opposing direction to the force acting on the object stopping its motion.
Similarly, if an object resembles at rest, then the inertia will be acting against the force tending to move that stationary object. So, on a spinning ride at fair, when a person sits there, the inertia acting on the person will prevent the person to falling down from the fair and not in moving in a circle.