Answer:
β2= β1+10*f
Explanation:
comparing β2 and β1, it is said that β2 is increased by a factor of f.
for each factor of f, there is a 10*f dB increase.
therefore if the β1 is increases by an intensity of factor f
the new intensity would be β1+ 10*f
Answer:
Dance studio
Explanation:
Martial art use to defend ourself from any dangerous. Dance is a way to learn it
The period of the pendulum doesn't determine the length of the string.
It's the other way around.
The period of the pendulum is proportional to the square root of its length.
So if you want to triple the period, you have to make the string nine times
as long as it is now.
Complete question:
A diver is 10 m below the surface of water. Calculate the pressure the fluid exerted on the diver. The acceleration of gravity is 9.8 m/s2 and the density of the water is 1000 kg/m3. Answer in units of Pa. Show your work.
Answer:
Tthe pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa
Explanation:
Given;
density of water, ρ = 1000 kg/m³
diver's position below the surface of the water, h = 10 m
acceleration due to gravity, g = 9.8 m/s²
Let the atmospheric pressure, P₀ = 101325 Pa
The pressure 10 m below the surface of the water is calculated as;
P = P₀ + ρgh
P = 101325 Pa + (1000 x 9.8 x 10)Pa
P = 199325 Pa
P = 1.99 x 10⁵ Pa.
Therefore, the pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa
Answer:
The distance between the two objects must be squared.
Explanation:
Gravitational force always act between two objects that have mass. The gravitational force is a weak force and attractive in nature.
The force of pull depends on the masses of the two objects and the distance between them.
The formula to calculate gravitational force between two objects having masses 'm' and 'M' and separated by a distance 'd' is given as:

Where, 'G' is called the universal gravitational constant and its value is equal to
.
Now, from the above formula, it is clear that, the force of gravitation is inversely proportional to the square of the distance between the two objects.
Thus, the quantity that must be squared in the equation of gravitational force between two objects is the distance 'd'.