Answer:
Lithium
Explanation:
The equation for the photoelectric effect is

where
is the energy of the incident photon, with
h being the Planck constant
c is the speed of light
is the wavelength of the photon
is the work function of the metal (the minimum energy needed to extract the photoelectron from the metal)
is the maximum kinetic energy of the emitted photoelectrons
In this problem, we have
is the wavelength of the incident photon
is the maximum kinetic energy of the electrons
First of all we can find the energy of the incident photon

Converting into electronvolts,

So now we can re-arrange the equation of the photoelectric effect to find the work function of the metal

So the metal is most likely Lithium, which has a work function of 2.5 eV.
Answer;
D. where two plates collide
Explanation;
-Subduction zones are plate tectonic boundaries where two plates converge, and one plate is thrust beneath the other. This process results in geohazards, such as earthquakes and volcanoes.
-Subduction zone volcanism occurs where two plates are converging on one another. One plate containing oceanic lithosphere descends beneath the adjacent plate, thus consuming the oceanic lithosphere into the earth's mantle. This on-going process is called subduction.
Answer:
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
Explanation:
This problem is an application of momentum and momentum. When the astronaut pushed balls, he needed more force to move the ball of greater mass (bowling). The expression for soul is
p = m v
Besibol Blade
p1 = m1 v
Bowling ball
p2 = m2 v
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
p2 >> p1
Hi there!
The period of an orbit can be found by:

T = Period (? s)
r = radius of orbit (6400000 m)
v = speed of the satellite (8000 m/s)
This is the same as the distance = vt equation. The total distance traveled by the satellite is the circumference of its circular orbit.
Let's plug in what we know and solve.

Answer:
The force applied to the surface is 9 kilo Newton.
Explanation:
While jumping on the surface the player applies the force that is equal to its weight on the surface.
The mass of the player is given as 90 kg.
Force applied by the player = weight of the player
Force applied by the player = m × g
Where m is the mass of the player and g is acceleration due to gravity
Force applied by the player = 90 × 9.8
Force applied by the player = 882 Newton
Expressing your answer to one significant figure, we get
Force applied by the player =0. 9 kilo Newton
The force applied to the surface is 0.9 kilo Newton.