<h3>♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫</h3>
➷ After 10,000 years the mass will be:
1,000 / 2 = 500
After 20,000 years the mass will be:
500/2 = 250
As you can see, the correct answer would be A. 20,000 years
<h3><u>✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
11. protect the cell and keep its shape.
12. chloroplast
Yes it can, because −3.5 lies to the left of −0.5.
Yes it can, because −3.5 lies to the right of −0.5.
No it cannot, because −3.5 lies to the left of −0.5.
No it cannot, because −3.5 lies to the right of −0.5.
Yes it can, because −3.5 lies to the left of −0.5.
Answer: Option A.
<u>Explanation:</u>
This option has been chosen because the left of the 0 has been shaded and all the negative values lies on the left of zero. So -3.5 lies to the left of -0.5 and is in the shaded region of the number line.
In a number line, the figure -3.5 lies on the left side compared to the number -0.5 because the higher the value on the negative side of the number line, more left it would be on the number line.
Answer:
W_net = mg + 2mgh/r
Explanation:
The forces applied in this motion of the bowling ball are both gravitational and centripetal forces.
Now, gravitational force is; F_g = mg
While centripetal force is; F_c = mv²/r
Since we want to express the net force in terms of the variables in the statement and we are not given "v", let's find an expression of v with the variables given.
Now, from Newton's equation of motion, at initial velocity of 0, v² = 2gh.
Thus;
F_c = 2mgh/r
Where;
m is ball mass
r is tube radius
h is fall height
Thus, the net force will be;
F_net = F_g + F_c
Now, Net force would be equal to the net weight that will be read on the scale.
Thus;
W_net = F_net = F_g + F_c
W_net = mg + 2mgh/r
The velocity of the object. because the greater the movement in particles the greater would be the kinetic energy.