1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adelina 88 [10]
3 years ago
7

A car accidently roll of a cliff. As it leaves the cliff it has horzontal velocity of 13 m/s it hits the ground 60m from the sho

reline. Calculate the hight of the cliff
Physics
1 answer:
grandymaker [24]3 years ago
7 0

Answer: The height of the cliff is 104.59 m

Explanation:

The horizontal speed of the car when it leaves the cliff is 13 m/s, and it hits the ground 60m from the shoreline.

Here we can use the relationship:

Time*Speed = Distance.

To find the time that the car is in the air, we know that:

speed = 13m/s

distance = 60m

time = T

13m/s*T = 60m

T = (60m)/13m/s = 4.62 s

This means that the car is falling for 4.62 seconds.

Now let's analyze the vertical problem.

As the car leaves the cliff, it only has horizontal velocity, this means that the vertical initial velocity will be zero

The only force acting in the vertical axis is the gravitational force, this means that the acceleration will be equal to the gravitational acceleration, which is:

g = 9.8m/s^2

then:

a = -9.8m/s^2

Where the negative sign is because the acceleration is pulling the car downwards.

To get the vertical velocity, we could integrate over time to get:

v(t) = (-9.8m/s^2)*t + v0

Where v0 is the constant of integration and the initial vertical velocity, that we already know that is equal to zero, then the vertical velocity as a function of time can be written as:

v(t) = (-9.8m/s^2)*t

To get the vertical position equation, we need to integrate again over the time:

P(t) = (1/2)*(-9.8m/s^2)*t^2 + H

Where H is the constant of integration and the initial vertical position, then H will be the height of the cliff.

We know that the car needs 4.62 seconds to hit the ground, this means that:

P(4.6s) = 0m

Then:

P(t) = (1/2)*(-9.8m/s^2)*(4.62s)^2 + H = 0

            (-4.9m/s^2)*(4.62s)^2 + H = 0

          H =  (4.9m/s^2)*(4.62s)^2 = 104.59 m

This means that the cliff is 104.59 meters high

You might be interested in
If you know the answer please answer the following question down in the picture below.
Harlamova29_29 [7]
I think it’s the second one: magnetic domains must come in pairs—one north and one south
3 0
4 years ago
Two cars are traveling in the same direction down a highway at 65 miles per hour. What is the relative velocity of the second ca
Levart [38]

Answer:

5 hours

Explanation:

Let the required time be x hours. The time will be the same for both cars.

The cars will cover different distances because they are travelling at different speeds.

<em>D=S×T </em>

The distance travelled by the slower car = 50×x miles.

The distance travelled by the faster car = 58×x miles.

The two distances differ by 40 miles.

58x−50x=40

8x=40

x=5 hours

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A second method:

The difference in the distances is 40 miles

The difference in the speeds is #8mph.

The time to make up the 40 miles= \frac{40}{8}=5 hours

8 0
3 years ago
A uniform rod of length L is pivoted at L/4 from one end. It is pulled to one side through a very small angle and allowed to osc
ludmilkaskok [199]

Answer:

T= 4.24sec

Explanation:

We are going to use the formula below to calculate.

T=2\pi \sqrt{\frac{L}{g} }

Where T is period

           L is length of rod

       g is acceleration due to gravity =     9.8m/s^{2}

From the problem, the rod is pivoted at 1/4L which means that three quarter of the rod was used for the oscillation. lets call this L_{O}

L_{O} = 3/4 * 5.95m

        = 4.4625m

thus   T=2\pi \sqrt{\frac{L_{O} }{g} }

          T=2\pi \sqrt{\frac{4.4625 }{9.8} }

          T= 4.24sec

8 0
4 years ago
An 80 N force causes a spring to compress 0.15 m. What is the spring constant? What is the potential energy of the spring?
Anni [7]
Force = -kx
80N=0.15m * -k
K=-80/0.15=533.333. Spring constant
Energy=1/2kx^2
1/2*(-80/0.15)*80^2=Energy
3 0
3 years ago
A harmonic wave on a string with a mass per unit length of 0.050 kg/m and a tension of 60 N has an amplitude of 5.0 cm. Each sec
Dennis_Churaev [7]

Answer:

Power of the string wave will be equal to 5.464 watt

Explanation:

We have given mass per unit length is 0.050 kg/m

Tension in the string T = 60 N

Amplitude of the wave A = 5 cm = 0.05 m

Frequency f = 8 Hz

So angular frequency \omega =2\pi f=2\times 3.14\times 8=50.24rad/sec

Velocity of the string wave is equal to v=\sqrt{\frac{T}{\mu }}=\sqrt{\frac{60}{0.050}}=34.641m/sec

Power of wave propagation is equal to P=\frac{1}{2}\mu \omega ^2vA^2=\frac{1}{2}\times 0.050\times 50.24^2\times 34.641\times 0.05^2=5.464watt

So power of the wave will be equal to 5.464 watt

6 0
3 years ago
Other questions:
  • A wood block is sliding up a wood ramp. if the ramp is very steep, the block will reverse direction at its highest point and sli
    14·1 answer
  • Moving from 0m/s to 25m/s in 8.0s equals an average acceleration of...
    13·2 answers
  • What is Ohm's Law, and how does it work in real life.
    11·1 answer
  • The geocentric model of the universe stated that _____.
    6·2 answers
  • A baseball has a mass of 0.45 kg and is thrown with a speed of 25 m/s. what is the momentum of the baseball?
    11·2 answers
  • Lightning bolts can carry currents up to approximately 20 kA. We can model such a current as the equivalent of a very long, stra
    8·1 answer
  • What is the momentum in Kg m/s of a 10 kg truck travelling at A) 5 m/s B) 20 cm/s C) 36 km/h?​
    10·1 answer
  • a 2.0 kg block on an incline at a 60.0 degree angle is held in equilibrium by a horizontal force, what is the magnitude of this
    14·2 answers
  • 3 points
    11·2 answers
  • Agatha the snake is 50 centimeters long.3 years from now she will be 152 centimeters long and fully grown. If Agatha grows at co
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!