1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shutvik [7]
4 years ago
13

What is the acceleration of the object? m/s2

Physics
1 answer:
Molodets [167]4 years ago
8 0

Answer:use

Explanation:google

You might be interested in
What is an ampere?<br><br> NO GUESSING! ANSWERS ONLY!
Igoryamba

Answer:

the SI base unit of electrical current

7 0
3 years ago
Read 2 more answers
Why did boy (the observer) hear the pitch of the sound change? What does this tell us about the frequency of the sound? Support
timofeeve [1]

Answer:

<u>because of the doppler effect</u>

Explanation:

<em>Remember</em>, the doppler effect refers to the changes in sound (frequency of sound) observed by a person who is in a position relative to the wave source.

In this example, we notice as the train comes closer to the boy, the sound becomes louder also increasing the pitch slightly, the doppler effect sets in when the train passes the boy because the boy notices a decrease in the pitch of the moving train.

We learn from the change in the observed sound of the train that the frequency of the sound is determined by the distance of the observer from the wave source.

In other words, the closer the source of the sound to the observer; the faster it travels to the observer, however, the farther it is; the lesser it is; the greater the sound heard.

5 0
3 years ago
A baseball pitcher throws a fastball horizontally at a speed of 43.0 m/s. Ignoring air resistance, how far does the ball drop be
Nady [450]
Based on your problem where as ask for the distance of the ball drop between the pitchers mound and the home plate and with a given of the speed of ball is 43m/s and the homeplates is 60.6ft away. Based on my step by step procedure and also considering the value of gravity by 9.8m/s^2 i came up with the distance of 144m away
7 0
3 years ago
Read 2 more answers
A 55 kg person falling with a velocity of 0.6
siniylev [52]

Answer:

What are we supposed to find, if it is kinetic energy then this is the solution.

K.E=1/2mv^2

K.E= kinetic energy

M=mass

V=velocity

K.E =0.5*55*0.6^2

K.E=9.9J

Explanation:

3 0
3 years ago
A thin spherical spherical shell of radius R which carried a uniform surface charge density σ. Write an expression for the volum
ozzi

Answer:

Explanation:

From the given information:

We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then

The volume charge distribution relates to the radial direction at r = R

∴

\rho (r) \  \alpha  \  \delta (r -R)

\rho (r) = k \  \delta (r -R) \ \  at \ \  (r = R)

\rho (r) = 0\ \ since \ r< R  \ \ or  \ \ r>R---- (1)

To find the constant k, we  examine the total charge Q which is:

Q = \int \rho (r) \ dV = \int \sigma \times dA

Q = \int \rho (r) \ dV = \sigma \times4 \pi R^2

∴

\int ^{2 \pi}_{0} \int ^{\pi}_{0} \int ^{R}_{0} \rho (r) r^2sin \theta  \ dr \ d\theta \ d\phi = \sigma \times 4 \pi R^2

\int^{2 \pi}_{0} d \phi* \int ^{\pi}_{0} \ sin \theta d \theta * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

(2 \pi)(2) * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

Thus;

k * 4 \pi  \int ^{R}_{0}  \delta (r -R) * r^2dr = \sigma \times  R^2

k * \int ^{R}_{0}  \delta (r -R)  r^2dr = \sigma \times  R^2

k * R^2= \sigma \times  R^2

k  =   R^2 --- (2)

Hence, from equation (1), if k = \sigma

\mathbf{\rho (r) = \delta* \delta (r -R)  \ \  at   \ \  (r=R)}

\mathbf{\rho (r) =0 \ \  at   \ \  rR}

To verify the units:

\mathbf{\rho (r) =\sigma \ *  \ \delta (r-R)}

↓         ↓            ↓

c/m³    c/m³  ×   1/m            

Thus, the units are verified.

The integrated charge Q

Q = \int \rho (r) \ dV \\ \\ Q = \int ^{2 \ \pi}_{0} \int ^{\pi}_{0} \int ^R_0 \rho (r) \ \ r^2 \ \  sin \theta  \ dr \ d\theta \  d \phi  \\ \\  Q = \int ^{2 \pi}_{0} \  d \phi  \int ^{\pi}_{0} \ sin \theta  \int ^R_{0} \rho (r) r^2 \ dr

Q = (2 \pi) (2) \int ^R_0 \sigma * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  \int ^R_0  * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  *R^2    since  ( \int ^{xo}_{0} (x -x_o) f(x) \ dx = f(x_o) )

\mathbf{Q = 4 \pi R^2  \sigma  }

6 0
3 years ago
Other questions:
  • Un automóvil lleva una velocidad inicial de 20 km/h al norte y a los 4 segundos su velocidad es de 50 km/h
    7·2 answers
  • What type of energy to high frequency waves have?
    14·1 answer
  • Which region of the ear gathers information and funnels sound
    7·2 answers
  • You ride your bicycle into the country side on a bike path. You travel 6 kilometers the first hour, 3 kilometers the second hour
    10·1 answer
  • What occurs when a swimmer pushes through the water to swim?
    11·2 answers
  • List 2 organelles that were NOT visible using a light microscope, but can be found in most animal cells?
    8·1 answer
  • How many atoms are in a molecule of C6H12O6?
    10·1 answer
  • When forklift moves a crate, it performs _______.
    12·2 answers
  • PLS HELP WILL GIVE 50 POINTS
    5·2 answers
  • The base ( foundation ) of building is made wider. Why ?​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!