Answer:
d. The gold(III) ion is most easily reduced.
Explanation:
The standard reduction potentials are
Au³⁺ + 3e⁻ ⟶ Au; 1.50 V
Hg²⁺ + 2e⁻ ⟶ Hg; 0.85 V
Zn²⁺ + 2e⁻ ⟶ Zn; -0.76 V
Na⁺ + e⁻ ⟶ Na; -2.71 V
A <em>more positive voltage</em> means that there is a <em>stronger driving force</em> for the reaction.
Thus, Au³⁺ is the best acceptor of electrons.
Reduction Is Gain of electrons and, Au³⁺ is gaining electrons, so
Au³⁺ is most easily reduced.
The density of a material is an intensive property.
<h3>
What is intensive property?</h3>
An intensive property of matter is one that does not change with the amount of matter. It is a bulk property, which means that it is a physical property that is independent of sample size or mass. An extensive property, on the other hand, is one that is affected by sample size.
<h3>What factors influence an intensive property?</h3>
Intensive properties are those that are determined solely by the characteristics of the material and not by its quantity - for example, density, temperature, refractive index, color, and pressure. Intensive properties are not additive, which means their value does not change when the amount of material is changed.
Learn more about the intensive property here:-
brainly.com/question/24909279
#SPJ4
Answer:
Not being able to adapt to their surroundings
Explanation:
For example, a population living in a cold climate and wears little to no clothes will give them frost bite. And so the nature of needing to adapt is core to survival.
<u>Answer:</u> The
for the reaction is -1835 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
( × 4)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[4\times (-\Delta H_1)]+[1\times \Delta H_2]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B4%5Ctimes%20%28-%5CDelta%20H_1%29%5D%2B%5B1%5Ctimes%20%5CDelta%20H_2%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1835 kJ.
Answer:
liquid bolling
Explanation:
because it just using heat.