Assume there are 100 g of the substance.
Masses:
Si: 46.8 g
O: 53.2 g
Moles:
Si: 46.8 / 28 = 1.67
O: 53.2 / 16 = 3.32
Dividing by the smaller number:
Si: 1.6 7/ 1.67 = 1
O: 3.32 / 1.67 = 2
Thus, the formula:
SiO2
I did it for you I was at my moms and my dad and my mom and I were talking to
<span>17.5 g
35 ppt stands for 35 parts per thousand. So let's convert that to a decimal number by taking 35 and dividing by 1000.
35/1000 = 0.035
Now multiply that number by the number of grams of seawater you have. So
0.035 * 500 g = 17.5 g
So you have 17.5 grams of salt when you have 500 grams of seawater.</span>
Answer:
1750L
Explanation:
Given
Initial Temperature = 25°C
Initial Pressure = 175 atm
Initial Volume = 10.0L
Final Temperature = 25°C
Final Pressure = 1 atm
Final Volume = ?
This question is an illustration of ideal gas law.
From the given parameters, the initial temperature and final temperature are the same; this implies that the system has a constant temperature.
As such, we'll make use of Boyle's Law to solve this;
Boyle's Law States that:
P₁V₁ = P₂V₂
Where P₁ and P₂ represent Initial and Final Pressure, respectively
While V₁ and V₂ represent Initial and final volume
The equation becomes
175 atm * 10L = 1 atm * V₂
1750 atm L = 1 atm * V₂
1750 L = V₂
Hence, the final volume that can be stored is 1750L
<u> Increasing pH will increase the solubility of the Hg2(CN)2 by shifting </u><u>equilibrium </u><u>to right side.</u>
What is the meaning of OH in chemistry?
The chemical group, ion, or radical OH that consists of one atom of hydrogen and one of oxygen and is neutral or negatively charged.
Hg2(CN)2 + 2OH- ----> 2HgO(s) + 2HCN
adding OH- to the mercury(l) cyanide will cause the formation of the solid HgO.
therefore increasing pH will increase the solubility of the Hg2(CN)2 by shifting equilibrium to right side.
Learn more about OH
brainly.com/question/2911201
#SPJ4