A. the height of the cactus plants
Explanation:
The dependent variable in this experiment designed to test this hypothesis is the height of the cactus plants.
In a hypothesis statement, we can always deduce the dependent and independent variables.
- Independent variables do not rely on other variables. They are usually the cause of the phenomenon observed in an experiment. In this experiment, it is the rainfall on the cactus plant.
- Dependent variable is that variable that relies on the independent variable. It is usually the effect of changes in independent variable.
- The height of the cactus plant depends on the amount of rainfall in an area.
learn more:
Controlled experiment brainly.com/question/1621519
#learnwithBrainly
The more UV rays reach the earth
Answer:
national
Explanation:
I don't understand, I'm sorry
Answer:
a) equilibrium shifts towards the right
b) equilibrium shifts towards the right
c) equilibrium shifts towards the left
d) has no effect on equilibrium position
e) has no effect on equilibrium position
Explanation:
A reversible reaction may attain equilibrium in a closed system. A chemical system is said to be in a state of dynamic equilibrium when the rate of forward reaction is equal to the rate of reaction.
According to Le Chateliers principle, when a constraint such as a change in temperature, pressure, volume or concentration is imposed upon a system in equilibrium, the equilibrium position shifts in such a way as to annul the constraint.
When the concentration of reactants is increased, the equilibrium position is shifted towards the right hand side and more products are formed. For an endothermic reaction, the reverse reaction is favoured by a decrease in temperature. Increase in pressure has no effect on the system since there are equal volumes on both sides of the reaction equation. Similarly, the addition of a catalyst has no effect on the equilibrium position since it speeds up both the forward and reverse reactions to the same extent.
The rate constant of the second order reaction is 0.137 M-1s-1.
<h3>What is the rate constant?</h3>
For the second order reaction we can write;
1/[A] = kt + 1/[A]o
[A]o = initial concentration
[A] = final concentration
k = rate constant
t = time
Now;
1/0.319 = 13.5k + 1/ 0.740
1/0.319 - 1/0.740 = 13.5k
3.13 - 1.35 = 13k
k = 3.13 - 1.35/13
k = 0.137 M-1s-1
Learn more about second order reaction:brainly.com/question/12446045
#SPJ1