Answer: independent variable: Size of the feather.
Explanation:
In an experiment, the manipulated/independent variable is, as the name implies, the variable that the scientist can control.
In this case, the scientist has only one variable that he can control at will, and this is the size of the feather (he can choose which feather he uses for the experiment)
So the manipulated variable will be the size of the feather.
And the dependent variable is the one that "answers" to the changes in the manipulated variable.
In this case, will be the time that it takes to the feather to fall to the ground.
Given:
v = 50.0 m/s, the launch velocity
θ = 36.9°, the launch angle above the horizontal
Assume g = 9.8 m/s² and ignore air resistance.
The vertical component of the launch velocity is
Vy = (50 m/s)*sin(50°) = 30.02 m/s
The time, t, to reach maximum height is given by
(30.02 m/s) - (9.8 m/s²)*(t s) = 0
t = 3.0634 s
The time fo flight is 2*t = 6.1268 s
The horizontal velocity is
u = (50 m/s)cos(36.9°) = 39.9842 m/s
The horizontal distance traveled at time t is given in the table below.
Answer:
t, s x, m
------ --------
0 0
1 39.98
2 79.79
3 112.68
4 159.58
5 199.47
6 239.37
Answer: 5billion years
Explanation: The sun produces energy through radioactive fusion reaction.
Nebula theory states that the gaseous particles of the Earth collapsed as a result of its own gravity which continuously lead to fusion reaction for the production of nuclear energy.
The Core of the Sun is that area up to 25% from the radius of the sun,here the pressure here range up to 250million atmosphere containing mainly hydrogen which gets converted in Helium molecule. The core is the center for energy production accounting for more than 98%, nuclear energy is transmitted at about 4.3million metric tons per second.
Answer:
The coefficient of static friction between the box and floor is, μ = 0.061
Explanation:
Given data,
The mass of the box, m = 50 kg
The force exerted by the person, F = 50 N
The time period of motion, t = 10 s
The frictional force acting on the box, f = 30 N
The normal force on the box, η = mg
= 50 x 9.8
= 490 N
The coefficient of friction,
μ = f/ η
= 30 / 490
= 0.061
Hence, the coefficient of static friction between the box and floor is, μ = 0.061
Answer:
Explanation:
The same current flows through each part of a series circuit. The total resistance of a series circuit is equal to the sum of individual resistances. Voltage applied to a series circuit is equal to the sum of the individual voltage drops.
I = 0.33 A
= 330 mA
Capacity, P = I × t
= 2050/330
= 6.21 hours
Time, t = 6.21 hours.