Answer:
a) Initial Value Problem
dv/dt = 4 - 0.1v
v(0) = 0
b) solution to the IVP
v(t) = 40(1 - e^(-t/10))
c) Limiting velocity
Vo = 40 ft/s
Position of the car after 12 hours
X = 14,390 ft
Explanations:
The complete explanations of each of the sections contained in the question are in the files attached to this solution.
Total magnetic field at the point P midway between the wires is Zero.
The higher wire's contribution to the magnetic field at point P is directed into the page, whereas the lower wire's contribution is directed out of the page. These two oppositely directed contributions to the magnetic field have identical magnitudes and cancel each other out since point P is equally spaced from the two wires and the currents flowing through them are of equal magnitude.
<h3>
</h3><h3>
Define magnitude?</h3>
The term "magnitude" refers to an object's greatest size and direction. Scalar and vector quantities both use magnitude as a common factor. We are aware that scalar quantities are those that have just magnitude by definition. Those quantities with both magnitude and direction are considered vector quantities. It can also be used to describe how far an object has travelled or how much an object weighs in terms of its magnitude.
To learn more about magnitude, visit:
brainly.com/question/14033610
#SPJ4
Y = +1-3 = -2
X = -5+7 = +2
D = √2^2-2^2 = 2√1+1 = 2√2 km
Most waves approach the shore at an angle. However, they bend to be nearly parallel to the shore as they approach it because when a wave reaches a beach or coastline, it releases a burst of energy that generates a current, which runs parallel to the shoreline.
- Most waves approach shore at an angle. As each one arrives, it pushes water along the shore, creating what is known as a longshore current within the surf zone.
- Waves approach the coast at an angle because of the direction of prevailing wind.
- The part of the wave in shallow water slows down, while the part of the wave in deeper water moves at the same speed.
- Thus when wave reaches a beach or coastline, it releases a burst of energy that generates a current, which runs parallel to the shoreline.
To know more about waves visit:
brainly.com/question/27831266
#SPJ4
Answer:
Explanation:
1) The time of flight equation for projectile motion can be used here to find total time in air.
t = 2vsin∅ / g
where v is speed, Ф is launch angle
t = 2×4×sin 60 / 9.8
t = 0.71 seconds
2) Distance where it hit the ground is called as range and has the following standard equation
D = v² sin2Ф/g
D = 4²sin 2×60 / 9.8
D = 1.41m
3) Maximum elevation is maximum time reached
h = v² sin²Ф / 2g
h = 4²sin² 60 / 2*9.8
h = 0.61 m