mass of carbonic acid = 300g
molar mass of H2CO3 = 2H + C + 3 O
= 2 x 1.008+ 12.01 + 3 x 16
= 62.03g/mol
moles of H2CO3 = mass/Molar mass
= 300/62.03
= 4.8364 moles
1 mole H2CO3 has 3 moles Oxygen
4.8364 moles H2CO3 contains
= 3 x 4.8364 moles Oxygen = 14.509 moles Oxygen
moles = mass/Molar mass
mass of oxygen = moles x Molar mass of Oxygen
= 14.509 x 16
= 232.15g Oxygen
mass of oxygen in 300g of carbonic acid(H2CO3) = 232.15g
Answer: 177600 J or 177.6kJ
Explanation:
For this problem, we need to use q = mcAT
we have m = 10000, and AT= 40. The specific heat of iron is 0.444.
So now we can plug it in: q = 10000*.444*40 = 177600 J or 177.6kJ
Calculations in chemistry can range from large numbers to the smallest number in decimals to be more accurate in data results. When this occurs using scientific notations allows you to note down results regardless of size as accurate as possible without writing a lot of numbers.
Answer:
1. more slowly than
2. larger than
3. weaker
Explanation:
Acetone molecules are bonded by very weak intermolecular forces when compared to that of the hydrogen bond between water molecules. This makes it very easy for acetone molecules to vaporize easily into its gaseous state, much more faster than water molecules (since the acetone molecules need a lesser amount of energy to break these bonds). Also, the boiling point of liquid acetone is much lower than that of water, meaning that it has a higher vapor pressure than that of water.