Answer:
Plane will 741.6959 m apart after 1.7 hour
Explanation:
We have given time = 1.7 hr
So if we draw the vectors of a 2d graph we see that the difference in angles is = 
Speed of first plane = 730 m/h
So distance traveled by first plane = 730×1.7 = 1241 m
Speed of second plane = 590 m/hr
So distance traveled by second plane = 590×1.7 = 1003 m
We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 58.6.
Using the law of cosine,
representing the distance between the planes, we see that:

r = 741.6959 m
The equilibrium condition allows finding the result for the force that the chair exerts on the student is:
- The reaction force that the chair exerts on the student's support is equal to the student's weight.
Newton's second law gives the relationship between force, mass and acceleration of bodies, in the special case that the acceleration is is zero equilibrium condition.
∑ F = 0
Where F is the external force.
The free body diagram is a diagram of the forces on bodies without the details of the shape of the body, in the attached we can see a diagram of the forces.
Let's analyze the force on the chair.
Let's analyze the forces on the student.
In conclusion using the equilibrium condition we can find the result for the force that the chair exerts on the student is:
- The reaction force that the chair exerts on the student's support is equal to the student's weight.
Learn more here: brainly.com/question/18117041
Answer:
In the nucleus
Explanation:
You find it in the nucleus. This is where protons and neutrons are. Don't forget the quarks as well ;)
Answer:
(d) A strong electron-phonon interaction
Explanation:
Superconductivity -
The phenomenon of superconductivity is due to the attractive force between electrons from the exchange of the phonons that cause the bound pair of electrons known as cooper pairs .
A strong electron -phonon intercation is suitable condition for superconductivity and high resistance .
Answer: To form a cloud, the air that rises must cool to the point where some of the water vapor molecules "clump together" at a faster pace than they are pulled apart by their thermal energy. These molecules then condense to form the clouds and water droplets.