Answer:
The change on the second particle is
.
Explanation:
The period of revolution of the particle in the magnetic field is given by the formula as follows :

It is given that the magnetic field is uniform. The mass of the second particle is the same as that of a proton but thecharge of this particle is different from that of a proton.

If both particles take the same amount of time to go once around their respective circles. So,

So, the change on the second particle is
.
Answer:
The angular velocity is 
Explanation:
From the question we are told that
The mass of each astronauts is 
The initial distance between the two astronauts 
Generally the radius is mathematically represented as 
The initial angular velocity is 
The distance between the two astronauts after the rope is pulled is 
Generally the radius is mathematically represented as 
Generally from the law of angular momentum conservation we have that

Here
is the initial moment of inertia of the first astronauts which is equal to
the initial moment of inertia of the second astronauts So

Also
is the initial angular velocity of the first astronauts which is equal to
the initial angular velocity of the second astronauts So

Here
is the final moment of inertia of the first astronauts which is equal to
the final moment of inertia of the second astronauts So

Also
is the final angular velocity of the first astronauts which is equal to
the final angular velocity of the second astronauts So

So

=> 
=> 
=> 
=> 
I'm pretty sure this is A
I don't understand the language.....
Answer:
Explanation:
Let's analyze the situation presented in order to know which answer is correct.
When the stick collides with the puck, it exerts a force for a certain time and discants. / After this time the horizontal force decreases to zero and the disk continues to move by the action of the initial velocity on the x axis and the acceleration of gravity on the y axis.
Therefore, after the collision, the only force that acts on the disk is the gravitational attractive force (WEIGHT), directed on the axis and in a negative direction.
The correct answer is:
C) Since there is no frictional force exerted on the puck, a normal force is not exerted on the puck, but the gravitational force is exerted on the puck