Answer:
# In a familiar high-school chemistry demonstration, an instructor first uses electricity to split water into its constituent gases, Hydrogen and Oxygen. Then, by combining the two gases and igniting them with a spark, the instructor changes the gases back into water with a loud pop (That means the energy is released in the process).
# There are new other ways to produce water in laboratory, however, the scientists can not produce water in large quantity for the masses, because of some reasons.
1- Theoretically, this is possible, but it would be an extremely dangerous process. Since Hydrogen is extremely flammable and Oxygen supports combustion, it wouldn’t take much to create this force, but we also have an explosion. That’s why this process can be a deadly one if our experiment is big enough.
2- Personally, I think that it makes no sense to produce water in a laboratory ( or in a large plant) for people to use as daily water. The much more important thing we need to do is to save our environment, our planet Earth. Because the daily water people drink contains not just water molecules but other minerals, the marine life is depend not just in water molecules but diferent factors, etc.
Explanation:
This is just my personal opinion. Hope that can help you a little. Have a nice day
for 39g water solute dissolved at 20C = solubility ( g/ 100 g H2O ) × mass of water = ( 11g / 100g H2O ) × 39g H2O = 4.29 g
amount of solute dissolved at 30 C =
= 23 / 100 * 39 = 8.97 g
Amount of extra solute dissolved = 8.97 - 4.29 = 4.7 g
Answer:
Joule - J
Explanation:
As energy is defined via work, the SI unit of energy is the same as the unit of work – the joule (J).
Answer:
A chemical equation consists of the chemical formulas of the reactants (on the left) and the products (on the right). The two are separated by an arrow symbol (“→” usually read aloud as “yields”). ... The equation also identifies that all the compounds are in the gaseous state.
Explanation:
Answer:
P₂ = 1312.88 atm
Explanation:
Given data:
Initial temperature = 25°C
Initial pressure = 1250 atm
Final temperature = 40°C
Final pressure = ?
Solution:
Initial temperature = 25°C (25+273.15 = 298.15 K)
Final temperature = 40°C ( 40+273.15 = 313.15 k)
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
1250 atm / 298.15 K = P₂/313.15 K
P₂ = 1250 atm × 313.15 K / 298.15 K
P₂ = 391437.5 atm. K /298.15 K
P₂ = 1312.88 atm