<span>c. What is the magnitude of the tension in the string at the bottom of the circle if you are swinging it at 3.37 m/s?
</span>
Answer:

ΔK = 2.45 J
Explanation:
a) Using the law of the conservation of the linear momentum:

Where:


Now:

Where
is the mass of the car,
is the initial velocity of the car,
is the mass of train,
is the final velocity of the car and
is the final velocity of the train.
Replacing data:

Solving for
:

Changed to cm/s, we get:

b) The kinetic energy K is calculated as:
K = 
where M is the mass and V is the velocity.
So, the initial K is:



And the final K is:




Finally, the change in the total kinetic energy is:
ΔK = Kf - Ki = 22.06 - 19.61 = 2.45 J
Answer:
The only such elements are the Noble Gases (He, Ne, Ar, Kr, Xe, Rn)
(that is helium, neon, argon, krypton, xenon and radon)
Term: Monoatomic
Explanation:
Here’s my work to your question. I used Newton’s Second Law and a kinematics equation to arrive at the answer.