Using kinematic equation, v^2 - u^2 = 2as. 5^2 - 3^2 = 2a x 16. a = 0.5m/s^2. So particle will deaccelerate at 0.5m/s^2. ( v = final velocity, u= initial velocity, a= acceleration, s= displacement.)
First, we need to know the amounts of the elements in the compound.
Tin (Sn)= 5.28 g
Fluorine (F) = 8.65 - 5.28 = 3.37 g
Convert these to units of moles by dividing the molar masses.
Tin (Sn)= 5.28 g / 118.71 g/mol = 0.044 mol
Fluorine (F) = 3.37 g / 19.00 g/mol = 0.177 mol
Divide both by the least number of moles of the two.
Tin (Sn)= 0.044 mol / 0.044 mol = 1
Fluorine (F) = 0.177 mol / 0.044 mol = 4
Therefore, the empirical formula would be:
SnF4
Answer:
v= 1495.04 m/s
Explanation:
The formula for velocity of sound is given by ;
v= fλ --------where
v= velocity of sound
f= frequency of turning fork
λ = wavelength
However,
Δ L = 1/2 λ ------where Δ L is spacing between resonances.
1.46 = 1/2 λ
1.46 * 2 = λ
2.92 m = λ
v= fλ
v= 512 * 2.92
v= 1495.04 m/s
Answer:
The angle between two just-resolvable stars for the Arecibo telescope is
.
Explanation:
The resulting image in a telescope obtained from an object is a diffraction pattern.
That diffraction pattern is obtained because the light encounters different obstacles on its path inside the telescope (interact with the walls and edges of the instrument).
The diffraction pattern is composed by a central disk, called Airy disk, and diffraction rings.
The angular resolution is defined as the minimal separation at which two sources can be resolved one for another, or in other words, when the distance between the two diffraction patterns maxima is greater than the radius of the Airy disk.
The angular resolution can be determined in an analytical way by means of the Rayleigh criterion.
(1)
Where
is the wavelength and D is the diameter of the telescope.
Notice that it is necessary to express the wavelength in the same units than the diameter.
⇒
Finally, equation 1 can be used.
Hence, the angle between two just-resolvable stars for the Arecibo telescope is
<u>Answer</u>
C.) 1.0 x 10^2 Newton’s
<u>Explanation</u>
The Newton's second law of motion states that, the rate of change of momentum is proportional to the force producing it.
∴ F = (mv- mu)/t
Ft = mv - mu.
The quantity Ft is called the impulse.
Ft = 0.30 Newton seconds
but t = 3.0 x 10⁻³ seconds
Ft = 0.30 Ns
F × 3.0 x 10⁻³ = 0.30 Ns
F = 0.30 / (3.0 x 10⁻³)
= 100 N
Answer = C.) 1.0 x 10^2 Newton’s