Answer:
i cant see the whats in the picture
Answer:
Average atomic mass = 17.5 amu.
Explanation:
Given data:
X-17 isotope = atomic mass17.2 amu, abundance:78.99%
X-18isotope = atomic mass 18.1 amu, abundance 10.00%
X-19isotope = atomic mass:19.1 amu, abundance: 11.01%
Average atomic mass of X = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) + (abundance of 3rd isotope × its atomic mass) / 100
Average atomic mass = (78.99×17.2)+(10.00×18.1) +(11.01+ 19.1) /100
Average atomic mass = 1358.628 + 181 +210.291 / 100
Average atomic mass = 1749.919 / 100
Average atomic mass = 17.5 amu.
Answer:
The answer is attached below
Explanation:
To draw the Lewis structure the sulphur willl be placed in the centre with the Valence electron sorrounding it the electrons between sulphu and oxygen to form bonds
Usually in this context you would be referring to the boiling and freezing point of a NaCl <em>solution</em> (saltwater) compared to pure H_{2}O. Sematics would be different for NaCl compound itself, you would say melting and boiling point for a solid substance- and the temperatures would be very, very radical (high).
The boiling point of pure water is 100 degrees C (212 F), and the freezing/melting point is below 0 degrees C (32 F). For a salt water solution, the boiling point is raised and the melting point is lowered. This means that water will stay liquid for an increased range of temperature. Depending on the amount of NaCl solute in the water, the boiling and melting points may change a few degrees.
1. Humidity
2. Temperature
3. Rainfall
In general, the electron pairs in a molecule that will adopt a shape to maximize their distance far apart, even charges repel each other as well as unlike charges attract,
for example H2O has two lone electrons pairs but it adopts an angular shape. Hope this help!!