Answer:
g = 0.4 m/s²
Explanation:
Given the following data;
Height = 5 meters
Time = 5 seconds
To find the acceleration due to gravity (g) on the planet;
Mathematically, the maximum height of an object is given by the formula;
H = ½gt²
Where;
H is the height measured in meters.
g is the acceleration due to gravity.
t is time measured in seconds.
Substituting into the formula, we have;
5 = ½ * g * 5²
5 = 0.5 * g * 25
5 = 12.5 * g
g = 5/12.5
g = 0.4 m/s²
Answer
given,
Weight of the child = 110 N
length of the swing,L = 2 m
now, calculating the potential energy when the string is horizontal
Potential energy = m g h
now, h = L (1 - cos θ) where θ is the angle made by the string with the vertical.
PE = m g L (1 - cos θ)
when rope is horizontal θ = 90°
PE = 110 x 2 (1 - cos 90°)
PE = 220 J
now, calculating potential energy when string made 25° with horizontal
PE = m g L (1 - cos θ)
when rope is horizontal θ = 25°
PE = 110 x 2 (1 - cos 25°)
PE = 20.61 J
Answer:
6.8 mm
Explanation:
We are given that
Mass of block,m=10 kg
Mass of bullet,
1 kg=1000 g
Total mass of system,M=
Speed of bullet,u=300 m/s

By law of conservation of momentum


According to law of conservation of energy
Change in kinetic energy of system=Change in potential energy of system


Where 

1m=100 cm

Distance traveled by block=
1cm=10 mm
C the thermal equilibrium