Answer:
Conductivity meter
Explanation:
All of the other choices measure pH and can tell you when the pH changes, which is how you know the neutralization reaction has occurred. A conductivity meter does not measure pH.
The compound that would have the highest osmotic pressure when dissolved in water is
.
So, option D is correct one.
The dissociation of one molecule of
gives the maximum number of ions when dissolved in water ( 4 ions ) . Osmotic pressure is a colligative property and depends upon number of solute particles present in the solution . The solution having maximum number of solute particles will have maximum number of the osmotic pressure .
All other given molecules gives less number of number of ions when dissolved in water as compare to of
.
To learn more about osmotic pressure
brainly.com/question/10046758
#SPJ4
Answer:
Carbon atoms in graphite and diamond are arranged in different ways. Hence, the two allotropes of carbon have different physical properties.
Explanation:
Both graphite and diamond are both made of only carbon atoms. However, their physical properties differ from each other. Hence, they are called allotropes. Think about how these carbon atoms are arranged in each of the allotropes.
<h3>Graphite</h3>
In graphite, each carbon atom is bonded to three other carbon atoms. These carbon atoms will be located in the same plane. A chunk of graphite can contain many of these planes.
Each carbon atom has four valence electrons. Three of these electrons will be used in the bonds. The other electron will be delocalized. These electrons would flow between the sheets of carbon atoms. That keeps the sheets separate and allow them to slide on top of each other.
<h3>Diamond</h3>
In diamond, each carbon atom is bonded to four other carbon atoms. These carbon atoms will form a tetrahedral network.
In graphite, there's a significant separation between two adjacent sheets of carbon atoms. The force between the two sheets is rather weak. When a piece of graphite is between two objects that move over one another, the layers in the graphite would also slide over one another. Since the attraction between two adjacent sheets isn't very strong, there wouldn't be much resistance. Hence the graphite acts as a lubricant.
In contrast, most of the carbon atoms in a piece of diamond would be connected to each other. Unlike the sheets in graphite, in a diamond there are almost no moving parts. Also, the forces between neighboring carbon atoms are very strong. When an external force acts on a chunk of diamond, the carbon atoms would barely move. Hence, the structure appears to be very rigid. That gives diamond its abrasive properties.
The answer is either D or B. hope this helps.
If theres a mixture of components we can calculate the mole fraction
mole fraction can be calculated as follows
mole fraction of component =

number of moles of ethanol - 3.00 mol
total number of moles in mixture - 3.00 + 5.00 = 8.00 mol
mole fraction of ethanol =

mole fraction of ethanol is 0.375