Answer:
The resulting pressure in the flask is 0.93 atm
Explanation:
- Apply the Ideal Gas law in both cases to get the mols, of Ar and SO2.
- Once you know the mols, sum both to get the total mols in the mixture.
- Apply the Ideal Gas lawin the flask with the total mols to know the resulting pressure.
First: 0.750 L of argon at 1.50 atm and 177°C
T° C + 273 = T° K → 177°C + 273 = 450K
P .V = n . R . T
1.50 atm . 0.750 L = n . 0.082 L.atm/mol.K . 450K
(1.50 atm . 0.750 L) / (0.082 mol.K/L.atm . 450K) = n
0.030 mols Ar = n
Be careful with the R units, the ideal gases constant
Let's convert kPa to atm.
101.33 kPa _____ 1 atm
95 kPa ________ (95 / 101.33) = 0.94 atm
T° C + 273 = T° K → 63°C + 273 = 336 K
0.94 atm . 0.235 L = n . 0.082 L.atm/mol.K . 336K
(0.94 atm . 0.235 L) / (0.082 mol.K/L.atm . 336K) = n
8.01X10⁻³ mols = n
0.030 mols Ar + 8.01X10⁻³ mols SO₂ = 0.038 total mols in the mixture
1L . P = 0.038 mol . 0.082 L.atm / mol.K . 298 K
P = (0.038 mol . 0.082 L.atm / mol.K . 298 K ) / 1L
P = 0.93 atm