Answer:
-10778.95 J heat must be removed in order to form the ice at 15 °C.
Explanation:
Given data:
mass of steam = 25 g
Initial temperature = 118 °C
Final temperature = 15 °C
Heat released = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 15 °C - 118 °C
ΔT = -103 °C
now we will put the values in formula
q = m . c . ΔT
q = 25 g × 4.186 J/g.°C × -103 °C
q = -10778.95 J
so, -10778.95 J heat must be removed in order to form the ice at 15 °C.
STP condition mean we have P=1 atm. T=273K. R=ideal gas constant, but make sure you use the one that has the same units of pressure, temperature that you are using. In this case R=0.0821 L*atm K^-1mol^1. You are provided with n=2.1 moles.
V=nRTP
Input your values and solve.
We are given –
- Final velocity of car is, v= 0
- Initial velocity of car is, u= 100 km/hr
- Time taken, t is = 3 minutes or 180 sec
Here–






Now –
____________________________










_______________________________
Answer:
ΔHreaction = 263.15 kJ/mol
Explanation:
The reaction is as follow:
OH + CF₂Cl₂ → HOF + CFCl₂
You need to calculate the enthalpy of reaction and for this it is necessary to know the standard enthalpies for each of the compounds. These enthalpies are as follows and can be found in your textbook or on the Internet.
ΔHreaction = ∑ΔHproducts - ∑ΔHreactants
