Answer:

Explanation:
Our values are,

We have all the values to apply the law of linear momentum, however, it is necessary to define the two lines in which the study will be carried out. Being an intersection the vehicle of mass m_1 approaches through the X axis, while the vehicle of mass m_2 approaches by the y axis. In the collision equation on the X axis, we despise the velocity of object 2, since it does not come in this direction.

For the particular case on the Y axis, we do the same with the speed of object 1.

By taking a final velocity as a component, we can obtain the angle between the two by relating the equations through the tangent

Replacing in any of the two functions, given above, we will find the final speed after the collision,



From the formula,
v=2πr/T
V(velocity is inversely related to T),so when v increases then time period will decrease.
Option a is correct.
Answer:
the force exerted on the foot by the tibia would be 2975 N
Explanation:
Given the data in the question;
To maintain equilibrium between the foot and the ball vertically, the addition normal normal force
(750 N) and the tension in the Achilles tendon
(2225 N) must be equal to the force exerted on the foot by the tibia;
so
|
| + |
| = |
|
so force exerted on the foot by the tibia will be;
|
| = |
| + |
|
so we substitute IN OUR VALUES
|
| = 750 N + 2225 N
|
| = 2975 N
Therefore, the force exerted on the foot by the tibia would be 2975 N
When the balloon is kept in the sun, due to Sun's heat, the kinetic energy of gaseous particles inside the balloons also gets increased and the balloon expands. This will increase the pressure on the walls of the balloon. It continues to expand and comes to a stage when the baloon bursts.