Power = 1800W (or 1.8KW by dividing by 1000)
Time = 3 hours
Power = energy/ time
1.8KW = energy/ 3
x3
5.4Kw/h= energy
(5.4KJ or 5400J used)
$0.15 Kw/h
$0.15 X 5.4 = 0.81
Thus, cost $0.81
Hope this helps!
Answer:
Minimum number of photons required is 1.35 x 10⁵
Explanation:
Given:
Wavelength of the light, λ = 850 nm = 850 x 10⁻⁹ m
Energy of one photon is given by the relation :
....(1)
Here h is Planck's constant and c is speed of light.
Let N be the minimum number of photons needed for triggering receptor.
Minimum energy required for triggering receptor, E₁ = 3.15 x 10⁻¹⁴ J
According to the problem, energy of N number of photons is equal to the energy required for triggering, that is,
E₁ = N x E
Put equation (1) in the above equation.

Substitute 3.15 x 10⁻¹⁴ J for E₁, 850 x 10⁻⁹ m for λ, 6.6 x 10⁻³⁴ J s for h and 3 x 10⁸ m/s for c in the above equation.

N = 1.35 x 10⁵
Answer:
The mass will accelerate. Balanced Forces: When forces are in balance, acceleration is zero. Velocity is constant and there is no net or unbalanced force. A plane will fly at constant velocity if the acceleration is zero.
Explanation:
Answer:

Explanation:
It is given that,
A planar electromagnetic wave is propagating in the +x direction.The electric field at a certain point is, E = 0.082 V/m
We need to find the magnetic vector of the wave at the point P at that instant.
The relation between electric field and magnetic field is given by :

c is speed of light
B is magnetic field

So, the magnetic vector at point P at that instant is
.