Answer:
0.41s
8.01m/s
Explanation:
Using the formula; v = u + at
Where;
u = initial velocity (m/s)
v = final velocity (m/s)
t = time (s)
a = acceleration (m/s²)
According to the provided information, u = 4m/s, s = 8m,
V = u + at
4 = 0 + 9.8t
4 = 9.8t
t = 0.41s
b) v = u + at
v = 4 + 9.8(0.41)
v = 4 + 4.018
v = 8.018m/s
Answer:
A. Heat flows from an object at higher temperature to an object at lower temperature
Explanation:
The option A obeys the 2nd law of thermodynamics. The heat will flow from the object at higher temperature to the object at Lower temperature till they reach an equilibrial state.
Heat doesn’t necessarily flow from an object with higher thermal energy to an object with lower thermal energy because an object has a higher thermal energy when it’s mass is more than the other. This makes B wrong.
C is wrong because heat moves from an object with higher temperature to objects with Lower temperature regardless of the state of matter.
In order to determine the angle of the refracted ray, we may apply Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is constant for a given wave when it passes through two different media. Mathematically, this is:
n₁sin(∅₁) = n₂sin(∅₂)
Where n is the refractive index. Substituting the values given into the equation:
1.0003 * sin(20°) = 1.33 * sin(∅)
∅ = 14.91
The angle of the refracted ray is 15°.
Answer:
Magnetoreception (also magnetoception) is a sense which allows an organism to detect a magnetic field to perceive direction, altitude, or location. This sensory modality is used by a range of animals for orientation and navigation, and as a method for animals to develop regional maps.
Explanation:
Answer:
The resultant velocity is 
Explanation:
Apply the law of conservation of momentum

Where
is the mass of the Luxury Liner = 40,000 ton
is the velocity of Luxury Liner = 20 knots due west
mass of freighter = 60,000
is the velocity of freighter = 10 knots due north
Apply the law of conservation of momentum toward the the west direction

So the equation would be

Substituting values

Where
the final velocity due west
Making
the subject


Apply the law of conservation of momentum toward the the north direction

So the equation would be

Where
the final velocity due north
Making
the subject


The resultant velocity is


