Answer: 1.12 m
Explanation:
This situation is related to parabolic motion, hence we can use the following equations:
(1)
(2)
Where:
is the ball final height (when it hits the ground)
is the ball initial height
is the initial velocity
is the angle at which the ball was launched
is the time
is the acceleration due gravity
is the horizontal distance the ball travels
Rewriting (1) with the given values:
(3)
Multiplying all the eqquation by -1 and rearranging:
(4)
So, since we have a quadratic equation here (in the form of
, we will use the quadratic formula to find
:
(5)
Where
,
,
Substituting the known values and choosing the positive result of the equation, we have:
(6)
Now, substituting (6) in (2):
(7)
(8) This is the horizontal distance at which the ball hits the ground.
UVA
I'm pretty sure it's UVA :)
The most waste is Yucca mtn. in Nevada
<span />
In order to find the efficiency first we will find the Change in Potential energy of the small stone that robot picked up
First we will find the mass of the stone
As it is given that stone is spherical in shape so first we will find its volume



Now it is given that it's specific gravity is 10.8
So density of rock is

mass of the stone will be



now change in potential energy is given as

here
g = gravity on planet = 0.278 m/s^2
H = height lifted upwards = 15 cm


Now energy supplied by internal circuit of robot is given by

V = voltage supplied = 10 V
i = current = 1.83 mA
t = time = 12 s


Now efficiency is defined as the ratio of output work with given amount of energy used


so efficiency will be 23 %