There is zero net force required to keep an object moving, even in the same direction. This is because the inertia only depends on the mass of the object moving, not the speed. Therefore, the answer would be none.
Answer:
α = 2 rad/s²
Explanation:
Newton's second law for rotation:
τ = I * α Formula (1)
where:
τ : It is the torque applied to the body. (N*m)
I : it is the moment of inertia of the body with respect to the axis of rotation (kg*m²)
α : It is angular acceleration. (rad/s²)
Data
I = 8.0 kg * m²
:moment of inertia of the disk
R = 1.6 m : radius of the disk
F = 10.0 N : tangential force applied to the disk
Torque applied to the disk
The torque is defined as follows:
τ = F*R
τ = 10.0 N* 1.6 m
τ = 16 N*m
Angular acceleration of the disk ( α )
We replace data in the formula (1):
τ = I * α
16 = 8
*α
α = 16 / 8
α = 2 rad/s²
Answer:
Your kinetic energy is 631800 J
Explanation:
Well i hope this helps
Answer:
12.5 ft/s
Explanation:
Height of person = 6 ft
height of lamp post = 10 ft
According to the question,
dx / dt = 5 ft/s
Let the rate of tip of the shadow moves away is dy/dt.
According to the diagram
10 / y = 6 / (y - x)
10 y - 10 x = 6 y
y = 2.5 x
Differentiate both sides with respect to t.
dy / dt = 2.5 dx / dt
dy / dt = 2.5 (5) = 12.5 ft /s